研究生: |
柯思妤 Ke, Sih-Yu |
---|---|
論文名稱: |
循環經濟引導廢棄聚氨酯泡棉水解與回收 Hydrolysis and recycling of waste polyurethane foam guided by circular economy |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
余靖
Yu, Chin 趙奕姼 Chao, Ito |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 聚氨酯泡棉 、水解 、回收 、碳量子點 、循環經濟 |
外文關鍵詞: | Polyurethane foam, Hydrolysis, Recycling, Carbon quantum dots, Circular economy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚氨酯軟性泡棉自二十世紀發明以來,已成為人類生活中不可或缺的重要材料,被廣泛的應用在家具和汽車工業中,年生產消費量約五百萬噸,累積大量的廢棄泡棉,急需經濟且有效的回收處理方法,以降低對環境生態的不良影響。
本研究分為三部分,以循環經濟為導向,水解並回收廢棄聚氨酯軟性泡棉(簡稱聚氨酯泡棉),再生為有價之單體和碳量子點。第一部分研發路易斯酸水解法分解聚氨酯泡棉,搭配田口實驗設計法,優化泡棉水解時的反應溫度、反應時間、催化劑濃度和醋酸濃度,選擇氯化鋁作為催化劑,降解率可達到99.9%。第二部分開發簡易的液液萃取方法,回收聚氨酯泡棉分解產物中的甲苯二胺和聚醚多元醇,回收率分別為60%和25%。
第三部分,開發在分解聚氨酯軟性泡棉同時,製備氮摻雜碳量子點方法,量子產率可達19.9%,且對次氯酸根具有良好的選擇性淬滅效應,不受金屬離子的干擾,成功的應用在自來水或是游泳池水中自由有效餘氯的檢測上,檢量線R2值達到0.993以上,添加回收率分別為92.1%和88.3%,RSD皆小於3%。
Polyurethane flexible foam (PUF) was developed in 20th century, and become one of the most important materials in our daily life. Due to its popularity in automotive industry and furniture market, the annual output of PUF is about 5 million tons, leads to a large number of PUF wastes. Which need an economic and efficient recycling method to reduce the adverse impact on the environment.
This study is divided into three parts. Hydrolysis and recycling of PUF as valuable compounds and carbon quantum dots (CQDs) is guided by circular economy. First, PUF wastes are decomposed via Lewis acid hydrolysis system. Taguchi method is used to optimize experimental conditions, including temperature, time, concentration of the catalyst and concentration of acetic acid. The degradation ratio can reach to 99.9% by selecting AlCl3 as a catalyst. Second, toluene diamine and polyether polyol can be recycled from the decomposed wastes by developing simple liquid-liquid extraction, the recovery are 60.0% and 25.0%, respectively.
Third, a preparation method of N-doped CQDs is developed in the hydrolysis process. The quantum yield of N-doped CQDs was 19.9%, showing great selective quenching effect for hypochlorite ion (ClO-) with no interference from metal ions. The N-doped CQDs can successfully determine the free available residual chlorine in tap water and swimming pool water. The calibration curve of ClO- detection shows good linear relationship (R2>0.993). Recovery of tap water and swimming pool water are 92.1% and 88.3%, respectively and RSD is less than 3 % in both cases.
1. Boulding, K. E. The economics of the coming spaceship earth; New York, 1966.
2. Pearce, D. W.; Turner, R. K. Economics of natural resources and the environment; JHU Press, 1990.
3. Sonnenschein, M. F. Polyurethanes: science, technology, markets, and trends; John Wiley & Sons, 2014.
4. Ionescu, M. Chemistry and technology of polyols for polyurethanes; iSmithers Rapra Publishing, 2005.
5. Akindoyo, J. O.; Beg, M.; Ghazali, S.; Islam, M. R.; Jeyaratnam, N.; Yuvaraj, A. R. RSC Adv. 2016, 6, 114453-114482.
6. 劉益軍。聚氨酯樹酯及其應用。化學工業出版社,2017。
7. Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. Chem. Rev. 2012, 113, 80-118.
8. 經濟部。自來水水質標準(民國92年8月20日)。
9. 行政院衛生署。營業衛生基準(民國98年12月02日)
10. Thomas, S.; Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, M. G. Recycling of Polyurethane Foams; William Andrew, 2018.
11. http://www.polyurethanes.org/uploads/documents/ regrind.pdf
12. https://www.isopa.org/media/2606/flexible-rebonded-foam.pdf
13. Behrendt, G.; Naber, B. W. J. Univ. Chem. Technol. Metall. 2009, 44, 3-23.
14. Molero, C.; De Lucas, A.; Rodríguez, J. F. Polym. Degrad. Stab. 2006, 91, 894-901.
15. Molero, C.; de Lucas, A.; Rodriguez, J. F. Polym. Degrad. Stab. 2009, 94, 533-539.
16. Santos, L. M. D.; Carone, C. L.; Dullius, J.; Ligabue, R.; Einloft, S. Polímeros 2013, 23, 608-613.
17. Murai, M.; Sanou, M.; Fujimoto, T.; Baba, F. J. Cell. Plast. 2003, 39, 15-27.
18. Wu, C. H.; Chang, C. Y.; Cheng, C. M.; Huang, H. C. Polym. Degrad. Stab. 2003, 80, 103-111.
19. Nikje, M. M. A.; Garmarudi, A. B.; Idris, A. B. Des. Monomers Polym. 2011, 14, 395-421.
20. Watando, H.; Saya, S.; Fukaya, T.; Fujieda, S.; Yamamoto, M. Polym. Degrad. Stab. 2006, 91, 3354-3359.
21. Garrido, M. A.; Font, R. J. Anal. Appl. pyrolysis. 2015, 113, 202-215.
22. Font, R.; Fullana, A.; Caballero, J. A.; Candela, J.; Garcıa, A. J. Anal. Appl. Pyrolysis 2001, 58, 63-77.
23. Campbell, G. A.; Meluch, W. C. Environ. Sci. Technol. 1976, 10, 182-185.
24. Dai, Z.; Hatano, B.; Kadokawa, J. I.; Tagaya, H. Polym. Degrad. Stab. 2002, 76, 179-184.
25. Wang, Y.; Cui, X.; Yang, Q.; Deng, T.; Wang, Y.; Yang, Y.; Jia, S.; Qin, Z.; Hou, X. Green Chem. 2015, 17, 4527-4532.
26. Wang, Y.; Cui, X.; Ge, H.; Yang, Y.; Wang, Y.; Zhang, C.; Li, J.; Deng, T.; Qin, Z.; Hou, X. ACS Sustainable Chem. Eng. 2015, 3, 3332-3337.
27. Wang, Y.; Song, H.; Ge, H.; Wang, J.; Wang, Y.; Jia, S.; Deng, T.; Hou, X. J. Cleaner Prod. 2018, 176, 873-879.
28. Jahanshahi, M.; Najafpour, G.; Rahimnejad, M. Afr. J. Biotechnol. 2008, 7, 362-367.
29. Jelinek, R. Carbon quantum dots; Springer International Publishing, Cham, 2017.
30. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736-12737.
31. Wang, Y.; Hu, A. J. Mater. Chem. C. 2014, 2, 6921-6939.
32. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S. Y. J. Am. Chem. Soc. 2006, 128, 7756-7757.
33. Dong, Y.; Zhou, N.; Lin, X.; Lin, J.; Chi, Y.; Chen, G. Chem. Mater. 2010, 22, 5895-5899.
34. Jiang, J.; He, Y.; Li, S.; Cui, H. Chem. Commun. 2012, 48, 9634-9636.
35. Wang, C.; Xu, Z.; Cheng, H.; Lin, H.; Humphrey, M. G.; Zhang, C. Carbon 2015, 82, 87-95.
36. Zhang, Y.; Liu, X.; Fan, Y.; Guo, X.; Zhou, L.; Lv, Y.; Lin, J. Nanoscale 2016, 8, 15281-15287.
37. Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. Nano Res. 2015, 8, 355-381.
38. Hu, S. L.; Niu, K. Y.; Sun, J.; Yang, J.; Zhao, N. Q.; Du, X. W. J. Mater. Chem. 2009, 19, 484-488.
39. Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T. K.; Sun, X.; Ding, Z. J. Am. Chem. Soc. 2007, 129, 744-745.
40. Wang, C. I.; Wu, W. C.; Periasamy, A. P.; Chang, H. T. Green Chem. 2014, 16, 2509-2514.
41. Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Chem. Commun. 2012, 48, 8835-8837.
42. Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 34, 5118-5120.
43. Liu, H.; Ye, T.; Mao, C. Angew. Chem. Int. Ed. 2007, 46, 6473-6475.
44. Kong, D.; Yan, F.; Shi, D.; Ye, Q.; Han, Z.; Chen, L.; Wang, L. J. Iran. Chem. Soc. 2015, 12, 1841-1857.
45. Li, H.; Liu, R.; Lian, S.; Liu, Y.; Huang, H.; Kang, Z. Nanoscale 2013, 5, 3289-3297.
46. Yin, B.; Deng, J.; Peng, X.; Long, Q.; Zhao, J.; Lu, Q.; Chen, Q.; Li, H.; Tang, H.; Zhang, Y.; Yao, S. Analyst 2013, 138, 6551-6557.
47. Xu, Y.; Wu, M.; Feng, X. Z.; Yin, X. B.; He, X. W.; Zhang, Y. K. Chem.: Eur. J. 2013, 19, 6282-6288.
48. Zhao, H. X.; Liu, L. Q.; De Liu, Z.; Wang, Y.; Zhao, X. J.; Huang, C. Z. Chem. Commun. 2011, 47, 2604-2606.
49. Jia, X.; Li, J.; Wang, E. Nanoscale 2012, 4, 5572-5575.
50. Wang, C.; Xu, Z.; Cheng, H.; Lin, H.; Humphrey, M. G.; Zhang, C. Carbon 2014, 82, 87-95.
51. Song, Z.; Quan, F.; Xu, Y.; Liu, M.; Cui, L.; Liu, J. Carbon 2016, 104, 169-178.
52. Choudhury, D. S.; Chethodil, J. M.; Gharat, P. M.; Pal, H. J. Phys. Chem. Lett. 2017, 8, 1389-1395.
53. Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J. Chem.: Eur. J. 2014, 20, 2254-2263.
54. Yu, H.; Zhang, H.; Huang, H.; Liu, Y.; Li, H.; Ming, H.; Kang, Z. New J. Chem. 2012, 36, 1031-1035.
55. Yang, S. T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y. P. J. Phys. Chem. C. 2009, 113, 18110-18114.
56. Hsu, P. C.; Chen, P. C.; Ou, C. M.; Chang, H. Y.; Chang, H. T. J. Mater. Chem. B. 2013, 1, 1774-1781.
57. Lackowicz, J. R. Principles of Fluorescence spectroscopy; Springer Science & Business Media, 1999.
58. Mas, S.; Perez, R.; Martinez‐Pinna, R.; Egido, J.; Vivanco, F. Proteomics 2008, 8, 3735-3745.
59. Coates, J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation, 2006.
60. Allan, D.; Daly, J.; Liggat, J. J. Polym. Degrad. Stab. 2013, 98, 535-541.
61. Giesbers, M.; Marcelis, A. T.; Zuilhof, H. Langmuir 2013, 29, 4782-4788.
62. Liu, T.; Li, N.; Dong, J. X.; Luo, H. Q.; Li, N. B. Sens. Actuators, B. 2016, 231, 147-153.
63. Zhou, L.; He, B.; Huang, J. Chem. Commun. 2013, 49, 8078-8080.
64. Yang, S.; Sun, J.; Li, X.; Zhou, W.; Wang, Z.; He, P.; Ding, G.; Xie, X.; Kang, Z.; Jiang, M. J. Mater. Chem. A. 2014, 2, 8660-8667.
65. Wu, M.; Wang, Y.; Wu, W.; Hu, C.; Wang, X.; Zheng, J.; Li, Z.; Jiang, B.; Qiu, J. Carbon 2014, 78, 480-489.
66. Yu, J.; Xu, C.; Tian, Z.; Lin, Y.; Shi, Z. New J. Chem. 2016, 40, 2083-2088.
67. Hu, Y.; Yang, J.; Tian, J.; Jia, L.; Yu, J. S. Carbon 2014, 77, 775-782.
68. Hu, S.; Wei, Z.; Chang, Q.; Trinchi, A.; Yang, J. Appl. Surf. Sci. 2016, 378, 402-407.
69. Lin, Y.; Yao, B.; Huang, T.; Zhang, S.; Cao, X.; Weng, W. Microchim. Acta. 2016, 183, 2221-2227.
70. Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. Microchim. Acta. 2017, 184, 1899-1914.