研究生: |
王心盈 Xing-Ying Wang |
---|---|
論文名稱: |
量子侷限效應對硫化鎘/雙團聯共聚合物混摻系統之影響 Quantum Confinement Effect of CdS/Block Copolymer Hybrid System |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 量子侷限效應 、高分子團聯共聚合物 、硫化鎘 、偶極力吸引作用 |
外文關鍵詞: | quantum confinement effect, block copolymer, cadmium sulfide, dipole-dipole interaction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
To study the quantum confinement effect and dipole-dipole interaction for semiconductor nanostructures templated by block copolymers, poly(4-vinylpyridine)-b-poly(caprolactone) (P4VP-PCL) diblock copolymers were used to serve as templates and combined with cadmium sulfide. Because of quantum confinement effect attributed to the size of the semiconductor below Bohr radius, a 3D confinement environment like a micellar texture is needed to prevent the aggregation of the semiconductor. Micellization was carried out due to the coordination between the nitrogen lone-pair electrons of P4VP and the cadmium ions in a PCL selective solvent (for instance, chlororbenzene). The process of the coordination between P4VP and the cadmium ions was traced by Fourier Transform Infrared (FTIR) Spectrometer. Two shoulders near the characteristic peaks of C=N (1600cm-1 and 1550cm-1) appeared and caused the decrease in the intensity of the two characteristic peaks. In order to examine dipole-dipole interaction for semiconductor nanostructures, different coupling conditions were established by controlling the packing degree of micelles which was controlled by the thickness of the Cd2+/P4VP-PCL thin-film samples. The thin-film samples were prepared by controlling spin rate and/or solution concentration; the micellar texture was formed as evidenced by transmission electron microscopy (TEM). The formation of CdS nanostructures was then achieved by using H2S(g) as reduction agent and the reduction process was traced by FTIR and ultraviolet-visible (UV) spectroscopy. As observed by TEM, the average size of Cd2+/P4VP-PCL micelles is about 25 nm and the micellar texture remains after reduction process. The FTIR results showed that the intensity of characteristic peaks of the C=N bond is increased due to the formation of cadmium sulfide nanoparticles. In addition, a significant absorption peak was observed after reduction from the UV spectrum which also proves the existing of cadmium sulfide. The average size of cadmium sulfide nanoparticles is around 2 nm as evidenced by TEM; well consistent to the estimated particle size according to the UV results. Interesting spectroscopic results were found in the UV spectrum. A significant blue shift as compared to the bulk state of cadmium sulfide was observed due to the result of quantum confinement effect. In addition, a significant red shift of absorption owing to the dipole-dipole interaction was found as the thickness of thin film increases substantially. We presume that the distance between micelles and the coupling number of micelles is the major reason to lead the change in absorption, and the micelles can be took as a dipole moment unit. Therefore, the intensity of dipole-dipole interaction increases when the distance between micelles decreases or the coupling number of micelles increases so as to cause the decrease in energy band gap of cadmium sulfide nanoparticles.
Chapter 7
References
1. Shabaev, A.; Efros, Al. L. Nano Lett. 2004, 4, 1821.
2. Ekimov, A. I.; Onushchenko, A. A. JETP Lett. 1981, 34, 345.
3. Peng, X. G.; Manna, L.; Yang, W. D.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
4. Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
5. Alivisatos, A. P. Science 1996, 271, 933.
6. Brust, M.; Kiely, C. J. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 202, 175.
7. Yoffe, A. D. Adv. Phys. 1993, 42, 173.
8. Kim, S. S.; Zhang W.; Pinavaia, T. J. Science 1998, 282, 1302.
9. Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692.
10. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
11. Tanev, P. T.; Pinnavaia, T. J. Science 1996, 271, 1267.
12. Tanev, P. T.; Liang, Y.; Pinnavaia, T. P. J. Am. Chem. Soc. 1997, 119, 8616.
13. Sone, E. D.; Zubarev E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
14. Spatz, J. P.; Roescher, A.; Moller, M. Adv. Mater. 1996, 8, 337.
15. Templin, M.; Franck, A.; Chesne, A. D.; Leist, H.,; Zhang, Y.; Ulrich, R.; Schadler, V.; Wiesner, U. Science 1997, 278, 1795.
16. Finnefrock, A. C.; Ulrich, R.; Toombes, G. E. S.; Gruner, S. M.; Wiesner U. J. Am. Chem. Soc. 1999, 121, 9852.
17. Bronstein, L. M.; Chernyshov, D. M.; Vorontsov, E.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Kazakov, S.; Khokhlov, A. R. J. Phys. Chem. B 2001, 105, 9077.
18. Matejicek, P.; Humpolickova, J.; Procha´zka, K.; Tuzar, Z.; Spirkova, M.; Hof, M.; Webber, S. E. J. Phys. Chem. B 2003, 105, 9077.
19. Stepanek, M.; Podhajecka, K.; Tesarova, E.; Prochazka, K.; Tuzar, Z.; Brown, W. Langmuir 2001, 17, 4240.
20. Bronstein, L. M.; Chernyshov, D. M.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Obolonkova, E. S.; Khokhlov, A. R. Langmuir 2000, 16, 3626.
21. Bronstein L. M.; Chernyshov D. M.; Timofeeva G. I.; Dubrovina L. V.; Valetsky, P. M.; Khokhlov A. R. J. Colloid Interface Sci. 2000, 230, 140.
22. Bailey, T. S.; Hardy, C. M.; Epps, T. H. III; Bates, F. S. Macromolecules 2002, 35, 7007.
23. Boontongkong Y.; Cohen, R. E. Macromolecules 2002, 35, 3647
24. Liu, G.; Ding, J.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S. Chem. Mater. 1999, 11, 2233.
25. Boontongkong, Y.; Cohen, R. E.; Rubner, M. F. Chem.Mater. 2000, 12, 1628.
26. Moffitt, M.; Vali, H.; Eisenberg, A. Chem.Mater. 1998, 10, 1021.
27. Burke, S. E.; Eisenberg, A. Langmuir 2001, 17, 8341.
28. Bendejacq, D.; Ponsinet, V.; Joanicot, M.; Loo, Y. -L.; Register, R. A. Macromolecules 2002, 35, 6645.
29. Zhang, L.; Eisenberg, A. Macromolecules 1996, 29, 8805.
30. Zhang, L.; Shen, H.; Eisenberg, A. Macromolecules 1997, 30, 1001.
31. Ma, Y.; Cao, T.; Webber, S. E. Macromolecules 1998, 31, 1773.
32. Wang, T. C.; Rubner, M. F.; Cohen, R. E. Chem.Mater. 2003, 15, 299.
33. Kuo, S. W.; Wu, C. H.; Chang, F. C. Macromolecules 2004, 37, 192.
34. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M. Adv. Mater. 1995, 7, 1000.
35. Seregina, M. V.; Bronstein, L. M.; Platonova, O. A.; Chernyshov, D. M.; Valetsky P. M. Chem.Mater. 1997, 9, 923.
36. Sohn, B. H.; Seo, B. H. Chem.Mater. 2001, 13, 1752.
37. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S. Langmuir 1999, 15, 83.
38. Djalali, R.; Li, S. Y.; and Schmidt, M. Macromolecules 2002, 35, 4282.
39. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W. Macromolecules 2000, 33, 4791.
40. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T. Langmuir 1999, 15, 5200.
41. Ribbe, A. E.; Okumura, A.; Matsushige, K.; Hashimoto, T. Macromolecules 2001, 34, 8239.
42. Hashimoto, T.; Harada, M.; Sakamoto, N. Macromolecules 1999, 32, 6867.
43. Hashimoto, T.; Okumura, A.; Tanabe, D. Macromolecules 2003, 36, 7324.
44. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Langmuir 2000, 16, 6913.
45. Amalvy, J. I.; Percy, M. J.; Armes, S. P.; Wiese, H. Langmuir 2001, 17, 4770.
46. Cho, G.; Jang, J.; Jung, S.; Moon, I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A. Langmuir 2002, 18, 3430.
47. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K. Chem.Mater. 1999, 11, 2372.
48. Moffitt, M.; Eisenberg, A. Chem.Mater. 1995, 7, 1178.
49. Zhao, H.; Douglas, E. P. Chem.Mater. 2002, 14, 1418.
50. Zhao, H.; Douglas, E. P.; Harrison, B. S.; Schanze, K. S. Langmuir 2001, 17, 8428.
51. Huang, J.; Lianos, P.; Yang, Y.; Shen, J. Langmuir 1998, 14, 4342.
52. Qi, L.; Co1lfen, H.; Antonietti, M. Nano Lett. 2001, 1, 61.
53. Hao, E.; Lian, T. Langmuir 2000, 16, 7879.
54. 功能性金及硫化鎘奈米粒子:合成、排列與物理性質之研究, 施勝銘, 臺灣大學材料科學與工程學研究所博士論文.
55. Trindade, T.; O'Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843.
56. Pankive, J. I. Optical processes in semiconductors; Dover Publications Inc.: New York, 1970.
57. Henglein, A. Chem Rev. 1989,89,1861.
58. Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183.
59. bawendi, M. G.; Steigerwald, M. L.; brus, L. E. Annu. Rev. Phys. Chem. 1993, 41, 477.
60. Weller, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 41.
61. Weller, H. Adv. Mater. 1993, 5, 88.
62. Hagfeldt, A.; Cratzel, M. Chem. Rev. 1995, 95, 49.
63. Fendler, J. H.; Meldrum, F. C. Adv. Mater. 1995, 95, 49.
64. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
65. Wang, C. W. ; Moffitt, G. Langmuir 2004, 20, 11784.
66. Brus L, 1999, “Chemical approaches to semiconductor nanocrystals and nanocrystal materials”, Nanotechnology, Chapter 6, Timp G Edited, Springer, New York.
67. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10,195
68. Heng, Y. U.; Hingbo, L.; Richard, A. L.; Wang, L. W.; William, E. B. Nature Material. 2003, 2, 517.
69. Bohren, C. and Huffman, D. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)
70. Krenn, J. R.; Weeber, J. C.; Dereux, A.; Bourillot, E.; Goudonnet, J. P. Phys. Rev.B 1999, 60, 5029.
71. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters, Springer Series in Material Science, Vol. 25 (Springer, Berlin, 1995).
72. Klar, T.; Perner, M.; Grosse, S.; Plessen, G.; Spirkl, W.; Feldman, J. Phys. Rev. Lett. 1998, 80, 4249.
73. Messinger, B. J.; Raben, K. U.; Chang, R. K.; Barber, P. W. Phys. Rev. B 1981, 24, 649.
74. Ebbesen, T.W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Nature (London) 1998, 391, 667.
75. Klar, T.; Perner, M.; Grosse, S.; Plessen, G.; Spirkl, W.; Feldmann, J. Phys. Rev. Lett.1998, 80, 4249.
76. Nilius, N.; Ernst, N.; Freund, H. J. Phys. Rev. Lett.2000, 84, 3994.
77. Krenn, J. R.; Dereux, A. ; Weeber, J. C.; Bourillot, E.; Lacroute, Y.; Goudonnet, J. P.; Schider, G.; Gotschy, W.; Leitner, A.; Aussenegg, F. R.; Girard, C. Phys. Rev. Lett.1999, 82, 2590.
78. Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S. Adv. Mater. 2005, 17, 2553.
79. Shipway, A. N.; Lahav, M.; Gabai, R.; Willner, I. Langmuir 2000, 16, 8789.
80. Hamley, I. W. The Physics of Block Copolymers 1998
81. Bates, F. S. ; Fredrickson, G. H. Phys. Today 1999, 52, 32.
82. Valkama, S. ; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J. ; Torkkeli, M.; Serimaa, R.; Brinke, G. T.; Ikkala, O. Macromolecules 2003, 36, 3986.
83. Abes, J. I.; Cohen, R. E.; Ross, C. A. Chem. Mater. 2003, 14, 1123.
84. Sone, E. D.; Zubarev, E. R.; Stupp, S. I. SMALL 2005, 1, 694.
85. Dayang, W.; Yaan, C.; Xintong, Z.; Zhiqiang, L.; Xinming, Q.; Xin, Ai.; Fengqi, L.; Dejun, W.; Yubai, B.; Tiejin, L.; Xinyi, T. Chem. Mater. 1999, 11, 392.
86. Shuang, D. W.; Zhengang, Z.; Zhongping, Z.; Ling, Z. Materials Science and Engineering 2002, B90, 206.
87. Spatz, J. P.; Mossmer, S.; Möller, M. Angew. Chem. Int. Ed. Engl. 1996, 35, 1510.
88. Spatz, J. P.; Sheiko, S.; Möller, M. Adv. Mater. 1996, 8, 513.
89. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A. Macromolecules 1996, 29, 7356.
90. Liu, L.; Li, S.; Garreau, H.; Vert, M. Biomacromlecules 2000, 1, 350.
91. Zalusky, A. S.; Olayo-Valles, R.; Taylor C.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
92. Li, S. J. Biomed. Mater. Res., Appl. Biomater. 1999, 48, 142.
93. Hakkarainen, M.; Karlsson, S.; Albertsson, A. C. Polymer 2000, 41, 2331.
94. 剪切力誘導PS-PLLA團聯共聚合物奈米微結構定向—奈米圖案成形模板之製備, 范慧雯, 中興大學化工所碩士論文.
95. Ho, R. M.; Lin, T.; Jhong, M. R.; Chung, T. M.; Ko, B. T.; Chen, Y. C. Macromolecules 2005 38, 8607.
96. Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L. Adv. Mater. 2005,17,1331.
97. Hamdoun, B.; Ausserre, D.; Joly, S.; Gallot, Y. ; Cabuil, V. ; Clinard, C. J. Phys. Ⅱ 1996, 6, 493.
98. Chan, Y. N. C.; Schrock, R.R.; Cohen, R. E. J. Am. Chem. Soc. 1992,114,7295.
99. Chan, Y. N. C.; Schrock, R.R.; Cohen, R. E. Chem. Mater. 1992, 4, 27.
100. Sankaran, V.; Cummins, C. C.; Schrock, R. R.; Cohen, R. E.; Silbey, R. J. J. Am. Chem. Soc. 1990, 112, 6858.
101. Kane, R. S.; Cohen, R. E.; Silbey, R. Chem. Mater. 1996, 8, 1919.
102. Moffitt, M.; McMahon, L; Pessel, V.; Eisenberg, A. Chem. Mater. 1995, 7, 1185.
103. Hanying, Z.; Elliot, P. D.; Benjamin, S. H.; Kirk, S. S. Langmuir 2001, 17, 8428.
104. Yeh, S. W.; Wei, K. H. Macromolecules 2003, 36, 7903
105. Spatz, J. P.; Sheiko, S.; Moller, M. Macromolecules 1996; 29; 3220.
106. Dollefeld, H.; Weller, H.; Eychmuller, A. J. Phys. Chem. B 2002; 106; 5604.
107. Hu J. T., Li L. S., Yang W. D., Manna L., Wang L. W., Alivisatos A. P. Science 2001, 292, 2060.