簡易檢索 / 詳目顯示

研究生: 王心盈
Xing-Ying Wang
論文名稱: 量子侷限效應對硫化鎘/雙團聯共聚合物混摻系統之影響
Quantum Confinement Effect of CdS/Block Copolymer Hybrid System
指導教授: 何榮銘
Rong-Ming Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 111
中文關鍵詞: 量子侷限效應高分子團聯共聚合物硫化鎘偶極力吸引作用
外文關鍵詞: quantum confinement effect, block copolymer, cadmium sulfide, dipole-dipole interaction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • To study the quantum confinement effect and dipole-dipole interaction for semiconductor nanostructures templated by block copolymers, poly(4-vinylpyridine)-b-poly(caprolactone) (P4VP-PCL) diblock copolymers were used to serve as templates and combined with cadmium sulfide. Because of quantum confinement effect attributed to the size of the semiconductor below Bohr radius, a 3D confinement environment like a micellar texture is needed to prevent the aggregation of the semiconductor. Micellization was carried out due to the coordination between the nitrogen lone-pair electrons of P4VP and the cadmium ions in a PCL selective solvent (for instance, chlororbenzene). The process of the coordination between P4VP and the cadmium ions was traced by Fourier Transform Infrared (FTIR) Spectrometer. Two shoulders near the characteristic peaks of C=N (1600cm-1 and 1550cm-1) appeared and caused the decrease in the intensity of the two characteristic peaks. In order to examine dipole-dipole interaction for semiconductor nanostructures, different coupling conditions were established by controlling the packing degree of micelles which was controlled by the thickness of the Cd2+/P4VP-PCL thin-film samples. The thin-film samples were prepared by controlling spin rate and/or solution concentration; the micellar texture was formed as evidenced by transmission electron microscopy (TEM). The formation of CdS nanostructures was then achieved by using H2S(g) as reduction agent and the reduction process was traced by FTIR and ultraviolet-visible (UV) spectroscopy. As observed by TEM, the average size of Cd2+/P4VP-PCL micelles is about 25 nm and the micellar texture remains after reduction process. The FTIR results showed that the intensity of characteristic peaks of the C=N bond is increased due to the formation of cadmium sulfide nanoparticles. In addition, a significant absorption peak was observed after reduction from the UV spectrum which also proves the existing of cadmium sulfide. The average size of cadmium sulfide nanoparticles is around 2 nm as evidenced by TEM; well consistent to the estimated particle size according to the UV results. Interesting spectroscopic results were found in the UV spectrum. A significant blue shift as compared to the bulk state of cadmium sulfide was observed due to the result of quantum confinement effect. In addition, a significant red shift of absorption owing to the dipole-dipole interaction was found as the thickness of thin film increases substantially. We presume that the distance between micelles and the coupling number of micelles is the major reason to lead the change in absorption, and the micelles can be took as a dipole moment unit. Therefore, the intensity of dipole-dipole interaction increases when the distance between micelles decreases or the coupling number of micelles increases so as to cause the decrease in energy band gap of cadmium sulfide nanoparticles.


    Contents Abstract…………………………………………………………………..I Contents...................................................................................................IV List of Figures...…...…………………………………………………...VII List of Tables………………………..……………………………...…XIII Chapter 1 Introduction…………………………………………………..01 1.1Introduction of Semiconductor……………………………………..04 1.1.1Bulk Semiconductors: Three-dimensional System……………...05 1.1.2 Low-dimensional System………………………………………07 1.1.3 Mechanism for Lighting………………………………………..08 1.2 Quantum Confinement Effect in Semiconductor………………….09 1.2.1 Crystal Size Effects on Exciton Energies in Semiconductor…...10 1.2.2 Crystal Shape Effects on Exciton Energies in Semiconductor…12 1.3 Surface Plasmon Coupling (dipole-dipole interaction)....................14 1.4 Electronic and Optical Properties of CdS Nanocrystal……………16 1.5 Self-assembly Behavior of Block Copolymer……………………..17 1.6 Mixing of Inorganic/BCP hybrid System………………………….19 1.6.1 Ex-situ Synthesis……………………………………………….19 1.6.2 In-situ Synthesis………………………………………………..20 1.7 Incorporation of Inorganic/Block Copolymer Hybrid System…….21 1.7.1 Functional polymers……………………………………………22 1.7.2 Synthesis of Cadmium Sulfide in Hybridization……………….25 1.7.3 Bonding mechanism between metal and pyridine……………...27 1.8 The kinds of Reduction…………………………………………….28 1.8.1 Gas Reduction………………………………………………….28 1.8.2 Solution Reduction……………………………………………..29 1.8.3 Ultraviolet Radiation Reduction..................................................29 1.9 Templation via BCP Self-assembly………………………………..30 1.10 Biodegradable Materials…..……………………………………...31 Chapter 2 Objectives……………………………………………………60 Chapter 3 Experimental Methods……………………………………….63 3.1 Instrument………………………………………………………….63 3.2 Synthesis of P4VP-b-PCL………………………………………....63 3.3 Sample Preparation and Experimental Methods…………………. 65 Chapter 4 Preliminary Results…………………………………………. 69 4.1 Thermal Behavior of VP175CL90 (fP4VPv =0.61)………………….69 4.2 Microphase-Separated Morphology of VP 143CL90……………. .70 4.3 Coordination of VP143CL90 and Cadmium Precursors…………. 70 4.4 Hybridized morphology……………………………………………72 4.5 Reduction Process……………………….…………..…………….74 4.6 Evolution of Reduction Process……………………...……………75 4.7 Thickness Effect…………………………………………………...78 4.8 Dipole-Dipole Interaction………………………………………….82 4.9 Proposed Mechanism for Thickness Effect on Absorption………..83 Chapter 5 Conclusion…………………………………………………...97 Chapter 6 Future Works………………………………………………..100 Chapter 7 Reference………………………………………..………….102 List of Figures Figure 1.1 Illustrations representing system dimensionality d: (a) bulk semiconductors, 3D; (b) thin films, layer structures, quantum wells, 2D; (c) linear chain structures, quantum wires, 1D; (d) clusters, colloids, microcrystallites, nanocrystallites, quantum dots, 0D…………………..34 Figure 1.2 Densities N(E) of states for (a) 3D, (b) 2D, (c) 1D and (d) 0D systems (corresponding to ideal cases)………………………………….34 Figure 1.3 Exciton energies for cubic CdS in the form of a slab, wire and quantum dot of side Lz. The exciton parameters used were M=0.94m0, ε2=8.1, Eb=28meV………………………………………………………35 Figure 1.4 Schematic diagram of possible luminescence transitions for a CdS microcrystallite: CB, conduction band, VB, valence band………...36 Figure 1.5 The size regimes of semiconductors with different types of electrical states, from molecule, quantum dot to bulk form…………….37 Figure 1.6a Predictions of simple particle-in-a-box models for the size dependences of the kinetic confinement energies of electrons and holes in corresponding……………………………………………………...…....38 Figure 1.6b The four highest occupied electronic states of CdSe quantum rods calculated with an empirical pseudopotential method with different aspect ratios. ............................................................................................38 Figure 1.7 (a) UV-vis spectra recorded 24 h after addition of MEA to citrate-stabilized Au nanoparticles for r values of i) 1000:1, ii) 1500:1, iii) 5000:1, and iv) 1010:1. (b)~(e) Corresponding TEM images taken after 24 h at r values of (b) 1000:1, (c) 1500:1, (d) 104:1, and (e) 1010:1. Scale bars are 100 nm………………………………………………………………39 Figure 1.8b Absorbance spectra of Au colloid multilayer assemblies cross-linked with (A) cyclobis(paraquat-p-phenylene) (1) or (B) methyl viologen (2). (a) 1 colloid layer, (b)-(e) 2-5 layers, respectively……….40 Figure 1.9 Absorption spectrum of CdS in aqueous solution: different mean particle size.....................................................................................41 Figure 1.10 The self-assembly and self ordering behavior of diblock copolymers and the scale of microphase separation is about tens of nanometer.................................................................................................42 Figure 1.9 Schematic phase diagram showing the various “classical” BCP morphologies adopted by non-crystalline linear diblock copolymer. T dark component represents the minority phase and the matrix, majority phase surrounds it.....................................................................................43 Figure 1.10 Schematic mechanism of ex-situ inorganic/BCP hybrid system (1) reduction and modification of inorganic precursors; (2) formation of nanostructure.......................................................................44 Figure 1.11 Schematic mechanism of inorganic/BCP hybrid system: (1) loading of metallic precursors; (2)formation of nanostructures; (3) reduction...................................................................................................45 Figure 1.12 Diblock copolymer PS-PEO hybrid system (a) Schematic diagram shows the mechanism of quantum dots (b) Observation of quantum dots by TEM micrograph...........................................................46 Figure1.13 AFM height images of micellar thin films: (A) as-cast film; (B) film treated in 0.04 M NaOH(aq).........................................................47 Figure1.14 Transmission electron micrographs of Au array in micellar thin films...................................................................................................48 Figure 1.15 Transmission electron micrographs of RuO4-stained samples: (a) VP27CL46, (b) VP27CL46 + HAuCl4 (Au/N ) 1/7), (c) VP27CL46 + HAuCl4 (Au/N ) 1/3), and (d) VP27CL46 + HAuCl4 (Au/N ) 1/1). The insets show the TEM micrographs of unstained samples at equal magnification............................................................................................49 Figure 1.16 TEM microgrphs of cadmium sulfide in the (5-O)80(MTD)220.......................................................................................50 Figure 1.17 (a) Plot of CdS cluster radii (RCdS) versus the number of repeat units in the ionic block (NB). The dotted line shows the best fit to the NB3/5 relation with a = 1.9 and b = 9.4 Å. A linear regression through the data is also shown (solid line); (b) Transmission electron micrograph of CdS in PS-(470)-b-PAA(32). The dark regions are CdS particles dispersed in the polymer...........................................................................51 Figure 1.18 (a) Schematic representation of the formation of a compound micelle and preparation of CdS nanoparticles in a compound micelle. (b) Transmission electron micrograph of Cd(Ac)2 salt induced micelles. The molar ratio of 2VP to Cd2+ is 1:0.5. The concentration of the block copolymer in THF is 26.6 g/L. The scale bar in the image represents 100 nm……………………………………………………………………….52 Figure 1.19 (a) Synchrotron SAXS curves of PS-b-PEO and CdS/PS-b-PEO. (b) TEM image of PS-b-PEO stained by OsO4. The dark regions correspond to PEO phases stained with OsO4. (c) TEM image of CdS/PS-b-PEO without staining...............................................................53 Figure 1.20 Various stages of the mineralization of DRC ribbons: (a) isolated CdS nanoparticles on the organic ribbon; (b) CdS particles that have grown a little and have begun to coalesce in a helical pattern; (c) a CdS helix that has grown wide enough that it completely obscures the ribbon template; (d) a mature CdS single helix. Scale bar is identical in all micrographs (50 nm)................................................................................54 Figure 1.21 TEM images of (a) nanocomposite I, (b) nanocomposite II, and (c) nanocomposite III with different reaction times..........................55 Figure 1.22 TEM images of the CdS products prepared by the ultraviolet irradiation method....................................................................................56 Figure 1.23 Ordered thin film of a block copolymer (PS-P2VP) containing an Au precursor salt................................................................57 Figure 1.24 SEM image of hexagonal packing microstructure after removing PLA and the dark region shows PLA domain..........................58 Figure 1.25 SPM image of diblock copolymer (PS-PLLA) (a) Before hydrolysis. (b) After hydrolysis................................................................59 Figure 4.1 Thermal analysis of P4VP-b-PCL block copolymer: (a) TGA thermograms of VP146CL90. (b) DSC thermograms of VP146CL90.....86 Figure 4.2 (a)Transmission electron micrographs of RuO4 stained VP146CL90, (b) Schematic morphology of VP146CL90, (c) One-dimensional SAXS profile of VP146CL90......................................87 Figure 4.3 FTIR spectrum of (a) VP146CL90 (fP4VPv=0.61), (b) Cd2+/VP146CL90 , (c) CdS/VP146CL90.................................................88 Figure 4.4 TEM micrographs of (a) Cd2+/VP146CL90 without staining, (b) Cd2+/VP146CL90 staining with I2, (c) Cd2+/VP146 without staining.....................................................................................................89 Figure 4.5 TEM micrographs of (a) CdS/VP146CL90 by solution reduction, (b) CdS/VP146CL90 by thin film reduction, (c) Diffraction pattern of CdS nanoparticles, (d) CdS/VP146 by thin film reduction…………………………………………………………….......90 Figure 4.6 UV spectra of Cd2+/VP146CL90 and CdS/VP146CL90........91 Figure 4.7 TEM micrography of 3wt% CdS/P4VP-PCL……………....92 Figure 4.8 (a) UV spectra of different thickness CdS/VP146CL90 thin film, (b) absorption wavelength vs. thickness length curve…………….93 Figure 4.9 TEM micrographs of different thickness of CdS/VP146CL90 thin film. (a)3000rpm, (b)1500rpm……………………………………..94 Figure 4.10 UV spectra of solution state and thin film…………………95 Figure 4.11. the micelles in the different state: (a) solution state, (b) monolayer, (c) multilayer or bulk state…………………………………96 List of Tables Table 1 Properties and Applications of Group IV and Compound Semiconductors........................................................................................33 Table 4.1 The thickness of different factors controlling………………..92

    Chapter 7
    References
    1. Shabaev, A.; Efros, Al. L. Nano Lett. 2004, 4, 1821.
    2. Ekimov, A. I.; Onushchenko, A. A. JETP Lett. 1981, 34, 345.
    3. Peng, X. G.; Manna, L.; Yang, W. D.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
    4. Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
    5. Alivisatos, A. P. Science 1996, 271, 933.
    6. Brust, M.; Kiely, C. J. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 202, 175.
    7. Yoffe, A. D. Adv. Phys. 1993, 42, 173.
    8. Kim, S. S.; Zhang W.; Pinavaia, T. J. Science 1998, 282, 1302.
    9. Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692.
    10. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
    11. Tanev, P. T.; Pinnavaia, T. J. Science 1996, 271, 1267.
    12. Tanev, P. T.; Liang, Y.; Pinnavaia, T. P. J. Am. Chem. Soc. 1997, 119, 8616.
    13. Sone, E. D.; Zubarev E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
    14. Spatz, J. P.; Roescher, A.; Moller, M. Adv. Mater. 1996, 8, 337.
    15. Templin, M.; Franck, A.; Chesne, A. D.; Leist, H.,; Zhang, Y.; Ulrich, R.; Schadler, V.; Wiesner, U. Science 1997, 278, 1795.
    16. Finnefrock, A. C.; Ulrich, R.; Toombes, G. E. S.; Gruner, S. M.; Wiesner U. J. Am. Chem. Soc. 1999, 121, 9852.
    17. Bronstein, L. M.; Chernyshov, D. M.; Vorontsov, E.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Kazakov, S.; Khokhlov, A. R. J. Phys. Chem. B 2001, 105, 9077.
    18. Matejicek, P.; Humpolickova, J.; Procha´zka, K.; Tuzar, Z.; Spirkova, M.; Hof, M.; Webber, S. E. J. Phys. Chem. B 2003, 105, 9077.
    19. Stepanek, M.; Podhajecka, K.; Tesarova, E.; Prochazka, K.; Tuzar, Z.; Brown, W. Langmuir 2001, 17, 4240.
    20. Bronstein, L. M.; Chernyshov, D. M.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Obolonkova, E. S.; Khokhlov, A. R. Langmuir 2000, 16, 3626.
    21. Bronstein L. M.; Chernyshov D. M.; Timofeeva G. I.; Dubrovina L. V.; Valetsky, P. M.; Khokhlov A. R. J. Colloid Interface Sci. 2000, 230, 140.
    22. Bailey, T. S.; Hardy, C. M.; Epps, T. H. III; Bates, F. S. Macromolecules 2002, 35, 7007.
    23. Boontongkong Y.; Cohen, R. E. Macromolecules 2002, 35, 3647
    24. Liu, G.; Ding, J.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S. Chem. Mater. 1999, 11, 2233.
    25. Boontongkong, Y.; Cohen, R. E.; Rubner, M. F. Chem.Mater. 2000, 12, 1628.
    26. Moffitt, M.; Vali, H.; Eisenberg, A. Chem.Mater. 1998, 10, 1021.
    27. Burke, S. E.; Eisenberg, A. Langmuir 2001, 17, 8341.
    28. Bendejacq, D.; Ponsinet, V.; Joanicot, M.; Loo, Y. -L.; Register, R. A. Macromolecules 2002, 35, 6645.
    29. Zhang, L.; Eisenberg, A. Macromolecules 1996, 29, 8805.
    30. Zhang, L.; Shen, H.; Eisenberg, A. Macromolecules 1997, 30, 1001.
    31. Ma, Y.; Cao, T.; Webber, S. E. Macromolecules 1998, 31, 1773.
    32. Wang, T. C.; Rubner, M. F.; Cohen, R. E. Chem.Mater. 2003, 15, 299.
    33. Kuo, S. W.; Wu, C. H.; Chang, F. C. Macromolecules 2004, 37, 192.
    34. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M. Adv. Mater. 1995, 7, 1000.
    35. Seregina, M. V.; Bronstein, L. M.; Platonova, O. A.; Chernyshov, D. M.; Valetsky P. M. Chem.Mater. 1997, 9, 923.
    36. Sohn, B. H.; Seo, B. H. Chem.Mater. 2001, 13, 1752.
    37. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S. Langmuir 1999, 15, 83.
    38. Djalali, R.; Li, S. Y.; and Schmidt, M. Macromolecules 2002, 35, 4282.
    39. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W. Macromolecules 2000, 33, 4791.
    40. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T. Langmuir 1999, 15, 5200.
    41. Ribbe, A. E.; Okumura, A.; Matsushige, K.; Hashimoto, T. Macromolecules 2001, 34, 8239.
    42. Hashimoto, T.; Harada, M.; Sakamoto, N. Macromolecules 1999, 32, 6867.
    43. Hashimoto, T.; Okumura, A.; Tanabe, D. Macromolecules 2003, 36, 7324.
    44. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Langmuir 2000, 16, 6913.
    45. Amalvy, J. I.; Percy, M. J.; Armes, S. P.; Wiese, H. Langmuir 2001, 17, 4770.
    46. Cho, G.; Jang, J.; Jung, S.; Moon, I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A. Langmuir 2002, 18, 3430.
    47. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K. Chem.Mater. 1999, 11, 2372.
    48. Moffitt, M.; Eisenberg, A. Chem.Mater. 1995, 7, 1178.
    49. Zhao, H.; Douglas, E. P. Chem.Mater. 2002, 14, 1418.
    50. Zhao, H.; Douglas, E. P.; Harrison, B. S.; Schanze, K. S. Langmuir 2001, 17, 8428.
    51. Huang, J.; Lianos, P.; Yang, Y.; Shen, J. Langmuir 1998, 14, 4342.
    52. Qi, L.; Co1lfen, H.; Antonietti, M. Nano Lett. 2001, 1, 61.
    53. Hao, E.; Lian, T. Langmuir 2000, 16, 7879.
    54. 功能性金及硫化鎘奈米粒子:合成、排列與物理性質之研究, 施勝銘, 臺灣大學材料科學與工程學研究所博士論文.
    55. Trindade, T.; O'Brien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843.
    56. Pankive, J. I. Optical processes in semiconductors; Dover Publications Inc.: New York, 1970.
    57. Henglein, A. Chem Rev. 1989,89,1861.
    58. Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183.
    59. bawendi, M. G.; Steigerwald, M. L.; brus, L. E. Annu. Rev. Phys. Chem. 1993, 41, 477.
    60. Weller, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 41.
    61. Weller, H. Adv. Mater. 1993, 5, 88.
    62. Hagfeldt, A.; Cratzel, M. Chem. Rev. 1995, 95, 49.
    63. Fendler, J. H.; Meldrum, F. C. Adv. Mater. 1995, 95, 49.
    64. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    65. Wang, C. W. ; Moffitt, G. Langmuir 2004, 20, 11784.
    66. Brus L, 1999, “Chemical approaches to semiconductor nanocrystals and nanocrystal materials”, Nanotechnology, Chapter 6, Timp G Edited, Springer, New York.
    67. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10,195
    68. Heng, Y. U.; Hingbo, L.; Richard, A. L.; Wang, L. W.; William, E. B. Nature Material. 2003, 2, 517.
    69. Bohren, C. and Huffman, D. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)
    70. Krenn, J. R.; Weeber, J. C.; Dereux, A.; Bourillot, E.; Goudonnet, J. P. Phys. Rev.B 1999, 60, 5029.
    71. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters, Springer Series in Material Science, Vol. 25 (Springer, Berlin, 1995).
    72. Klar, T.; Perner, M.; Grosse, S.; Plessen, G.; Spirkl, W.; Feldman, J. Phys. Rev. Lett. 1998, 80, 4249.
    73. Messinger, B. J.; Raben, K. U.; Chang, R. K.; Barber, P. W. Phys. Rev. B 1981, 24, 649.
    74. Ebbesen, T.W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Nature (London) 1998, 391, 667.
    75. Klar, T.; Perner, M.; Grosse, S.; Plessen, G.; Spirkl, W.; Feldmann, J. Phys. Rev. Lett.1998, 80, 4249.
    76. Nilius, N.; Ernst, N.; Freund, H. J. Phys. Rev. Lett.2000, 84, 3994.
    77. Krenn, J. R.; Dereux, A. ; Weeber, J. C.; Bourillot, E.; Lacroute, Y.; Goudonnet, J. P.; Schider, G.; Gotschy, W.; Leitner, A.; Aussenegg, F. R.; Girard, C. Phys. Rev. Lett.1999, 82, 2590.
    78. Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S. Adv. Mater. 2005, 17, 2553.
    79. Shipway, A. N.; Lahav, M.; Gabai, R.; Willner, I. Langmuir 2000, 16, 8789.
    80. Hamley, I. W. The Physics of Block Copolymers 1998
    81. Bates, F. S. ; Fredrickson, G. H. Phys. Today 1999, 52, 32.
    82. Valkama, S. ; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J. ; Torkkeli, M.; Serimaa, R.; Brinke, G. T.; Ikkala, O. Macromolecules 2003, 36, 3986.
    83. Abes, J. I.; Cohen, R. E.; Ross, C. A. Chem. Mater. 2003, 14, 1123.
    84. Sone, E. D.; Zubarev, E. R.; Stupp, S. I. SMALL 2005, 1, 694.
    85. Dayang, W.; Yaan, C.; Xintong, Z.; Zhiqiang, L.; Xinming, Q.; Xin, Ai.; Fengqi, L.; Dejun, W.; Yubai, B.; Tiejin, L.; Xinyi, T. Chem. Mater. 1999, 11, 392.
    86. Shuang, D. W.; Zhengang, Z.; Zhongping, Z.; Ling, Z. Materials Science and Engineering 2002, B90, 206.
    87. Spatz, J. P.; Mossmer, S.; Möller, M. Angew. Chem. Int. Ed. Engl. 1996, 35, 1510.
    88. Spatz, J. P.; Sheiko, S.; Möller, M. Adv. Mater. 1996, 8, 513.
    89. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A. Macromolecules 1996, 29, 7356.
    90. Liu, L.; Li, S.; Garreau, H.; Vert, M. Biomacromlecules 2000, 1, 350.
    91. Zalusky, A. S.; Olayo-Valles, R.; Taylor C.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    92. Li, S. J. Biomed. Mater. Res., Appl. Biomater. 1999, 48, 142.
    93. Hakkarainen, M.; Karlsson, S.; Albertsson, A. C. Polymer 2000, 41, 2331.
    94. 剪切力誘導PS-PLLA團聯共聚合物奈米微結構定向—奈米圖案成形模板之製備, 范慧雯, 中興大學化工所碩士論文.
    95. Ho, R. M.; Lin, T.; Jhong, M. R.; Chung, T. M.; Ko, B. T.; Chen, Y. C. Macromolecules 2005 38, 8607.
    96. Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L. Adv. Mater. 2005,17,1331.
    97. Hamdoun, B.; Ausserre, D.; Joly, S.; Gallot, Y. ; Cabuil, V. ; Clinard, C. J. Phys. Ⅱ 1996, 6, 493.
    98. Chan, Y. N. C.; Schrock, R.R.; Cohen, R. E. J. Am. Chem. Soc. 1992,114,7295.
    99. Chan, Y. N. C.; Schrock, R.R.; Cohen, R. E. Chem. Mater. 1992, 4, 27.
    100. Sankaran, V.; Cummins, C. C.; Schrock, R. R.; Cohen, R. E.; Silbey, R. J. J. Am. Chem. Soc. 1990, 112, 6858.
    101. Kane, R. S.; Cohen, R. E.; Silbey, R. Chem. Mater. 1996, 8, 1919.
    102. Moffitt, M.; McMahon, L; Pessel, V.; Eisenberg, A. Chem. Mater. 1995, 7, 1185.
    103. Hanying, Z.; Elliot, P. D.; Benjamin, S. H.; Kirk, S. S. Langmuir 2001, 17, 8428.
    104. Yeh, S. W.; Wei, K. H. Macromolecules 2003, 36, 7903
    105. Spatz, J. P.; Sheiko, S.; Moller, M. Macromolecules 1996; 29; 3220.
    106. Dollefeld, H.; Weller, H.; Eychmuller, A. J. Phys. Chem. B 2002; 106; 5604.
    107. Hu J. T., Li L. S., Yang W. D., Manna L., Wang L. W., Alivisatos A. P. Science 2001, 292, 2060.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE