簡易檢索 / 詳目顯示

研究生: 鄭佳榮
Cheng, Chia-Jung
論文名稱: 觀測黑洞X光瞬變源X1755-338在2020-2021的爆發
Observations of the black hole X-ray transient X1755-338 in the 2020-2021 outburst
指導教授: 江國興
Kong, K. H. Albert
口試委員: 張祥光
Chang, Hsiang-Kuang
胡欽評
Hu, Chin-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 88
中文關鍵詞: 黑洞物理雙星系統吸積過程黑洞X光瞬變源
外文關鍵詞: Black hole physics, Binaries, Accretion, Black hole X-ray transient
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低質量X光雙星系統是由一顆在中心的緻密星體(黑洞或中子星)經由洛希瓣吸積低質量伴星所組成。X光新星,又稱作軟X光瞬變源,是低質量X光雙星系統的一個分支,此系統長時間處在靜止態,偶然會轉變進入爆發的狀態,此時我們可以在X光、可見光波段偵測到它。在爆發態時,從內部吸積盤產生的X光射線在短時間內會大量增加,受到這些X光照射的外部吸積盤跟伴星會再產生可見光。觀測高傾角的低質量X光雙星系統可以幫助我們了解吸積盤上的物質分布與內容。此外,分析軟X光瞬變源在不同放射狀態下X光與可見光的訊號提供我們機會去說明吸積的過程與結構。
    本論文主要目標是去探討正在爆發狀態的黑洞X光瞬變源X1755-338在2020-2021年的行為。黑洞X光瞬變源X1755-338有一個很有趣的特性,它在上一次爆發過程中(1984),在X光與可見光波段被觀察到有4.46個小時的軌道週期。有鑑於此,我們在2020-2021利用鹿林天文台一公尺可見光望遠鏡去觀測X1755-338並嘗試獲得跟上一次接近的週期結果。出乎意料的是,4.46小時的週期在可見光與X光同時消失了,我們也發現一些證據指出這次的爆發明顯比上一次來得弱,這可能也意味著黑洞X光瞬變源X1755-338在這兩次的爆發中展現了不一樣的吸積過程與機制,這可能也是造成4.46小時週期消失的主要原因。
    另外,我們也展示了在日本希望號實驗艙上全天X光射線監視裝置(MAXI)的每天平均X光曲線。除此之外,我們利用高能量X光曲線產生器去尋找所有觀測過黑洞X光瞬變源X1755-338的X光任務並展示從1969年到2021年長期的X光曲線。並且為了找出一些有關X1755-338長期變化與不尋常長時間爆發行為的線索,我們嘗試將X1755-338與另一個軟X光瞬變源GRS 1915+105做比較,儘管它們有相似的行為表現,但是本質上它們還是有許多的不同之處,加上我們對於X1755-338的距離與中心黑洞質量還存在很大的不確定性,要解釋其行為還需要更多精確的資訊。


    Low-mass X-ray binaries (LMXBs) are binary systems where a black hole or a neutron star accretes from a low mass companion star through Roche-lobe overflow. X-ray novae, also known as soft X-ray transients (SXTs) is a subset of LMXBs. SXTs stay in quiescent state for a long time and accidentally turn into an outburst such that we can detect them in X-ray and optical bands. During an outburst, the X-ray flux of X-ray binary which originates from the inner accretion disk increases considerably and reprocesses in the outer accretion disk and the companion star to produce optical emission. Observing high inclination LMXBs during an outburst can help us to clarify the characteristics and distribution of the gas surrounding the X-ray-illuminated accretion disk. Furthermore, studying X-ray and optical emissions of SXTs at different emission states provides us an opportunity to explicate the accretion process and the geometry of the systems.
    The primary objective of this thesis is to study a black hole X-ray binary currently in outburst. Our target, X1755-338, is a black hole X-ray binary with a 4.46-hr orbital period in both X-ray and optical bands. We use the Lulin One-Meter Telescope (LOT) to monitor the optical behaviors of X1755-338 in 2020 and 2021 and attempt to reproduce the 4.46-hr optical light curves. However, there is evidence that the current outburst is a failed (weaker) one and this indicates a slightly different accretion geometry compared with the last outburst.
    In addition, we exhibit MAXI daily average light curves in order to obtain more information about this rare failed outburst. We also search all the historical X-ray missions and investigate the X-ray long-term light curve of X1755-338 from 1969-2021. Furthermore, in order to interpret the long-time scale variations and extraordinary long duration outburst, we compare X1755-338 with another SXTs, GRS 1915+105 which show similar long-term X-ray behaviors. We conclude that they are still quite different with the diverse observational and intrinsic physical properties.

    摘要........................................................I Abstract...................................................II Acknowledgements...........................................IV Contents...................................................VI List of Figures............................................IX List of Tables............................................XII Chapter 1 Introduction......................................1 1.1 X-ray binaries.......................................1 1.1.1 High-mass X-ray binaries (HMXBs)...................2 1.1.2 Low-mass X-ray binaries (LMXBs)....................4 1.1.3 X-ray dippers......................................6 1.2 Black hole binaries (BHBs)...........................7 1.2.1 X-ray light curves and spectra of BHBs, BHCs......10 1.3 Emission states of BHBs.............................13 1.3.1 Quiescent state...................................13 1.3.2 High/Soft (HS) state..............................14 1.3.3 Low/Hard (LH) state...............................15 1.3.4 Steep power-law or Very High (VH) state...........17 1.3.5 Intermediate state................................19 1.4 X-ray novae.........................................20 1.5 Disk instability model..............................22 1.5.1 Advection-dominated accretion flow................23 1.6 Mechanisms for the outbursts of SXTs................25 Chapter 2 X1755-338........................................28 2.1 X1755-338 during the outbursts and the quiescence...30 2.2 X-ray dips and iron emission line...................31 2.3 Motivation and objectives of this work..............32 Chapter 3 Instrumentation..................................33 3.1 Lulin Observatory...................................33 3.2 MAXI................................................34 Chapter 4 Data Analysis....................................36 4.1 LOT Optical Observations............................36 4.1.1 Data Reduction and Alignment......................36 4.1.2 Point-Spread Function (PSF) Photometry............38 4.1.3 Differential Photometry and Periodogram...........41 4.1.4 SDSS g-band filter (410-552nm)....................41 4.1.5 SDSS r-band filter (550-694nm)....................42 4.1.6 SDSS i-band filter (694-847nm)....................43 4.1.7 Lomb-Scargle Periodogram..........................44 4.2 MAXI X-ray light curves of X1755-338................45 4.3 X-ray long-term light curve of X1755-338............46 Chapter 5 Results and Discussion...........................47 5.1 LOT Optical light curves of X1755-338...............47 5.1.1 LOT Optical light curves of each date.............47 5.1.2 Periodograms and folded light curves with 4.46-hr period...53 5.1.3 Summary...........................................57 5.2 MAXI X-ray light curves of X1755-338................58 5.2.1 Daily Average Light Curves of MAXI................58 5.3 X-ray long-term light curve of X1755-338............60 5.4 Discussion and Conclusion...........................63 5.4.1 Missing 4.46-hr Period............................63 5.4.2 HS state and unusual duration of the outburst.....65 Chapter 6 Summary and Future Works.........................72 6.1 Summary.............................................72 6.2 Future Works........................................73 Bibliography...............................................75 Appendix...................................................82

    Abramowicz, M. A., Czerny, B., Lasota, J. P., Szuszkiewicz, E. (1988). Slim Accretion Disks. The Astrophysical Journal, 332, 646-658.
    Abramowicz, M. A., Kluźniak, W. (2001). A precise determination of black hole spin in GRO J1655-40. Astronomy & Astrophysics, 374, L19-L20.
    Angelini, L., White, N. E. (2003). An XMM-Newton Observation of 4U 1755-33 in Quiescence: Evidence of a Fossil X-Ray Jet. The Astrophysical Journal, 586, 1, L71-L75.
    Bondi, H., Hoyle, F. (1944). On the Mechanism of Accretion by Stars. Monthly Notices of the Royal Astronomical Society, 104, 273-282.
    Cannizzo, J. K., Ghosh, P., & Wheeler, J. C. (1982). Convective accretion disks and the onset of dwarf nova outbursts. The Astrophysical Journal, Letter to the Editor, 260(2), L83-L86.
    Carotenuto, F., Corbel, S. (2021). 4U 1755-338 is still in a soft/thermally dominated state after 10 months. Retrieved from The Astronomer's Telegram, No. 14411.
    Corbel, S., Fender, R. P., Tzioumis, A. K., Nowak, M., McIntyre, V., Durouchoux, P., Sood, R. (2000). Coupling of the X-ray and radio emission in the black hole candidate and compact jet source GX 339–4. Astronomy & Astrophysics, 359, 251-268.
    Corral-Santana, J. M., Casares, J., Muñoz-Darias, T., Bauer, F. E., Martínez-Pais, I. G., Russell, D. M. (2016, March). BlackCAT: A catalogue of stellar-mass black holes in X-ray transients. Astronomy & Astrophysics, Volume 587, A61.
    Deegan, P., Combet, C., Wynn, G. A. (2009). The outburst duration and duty cycle of GRS 1915+105. Monthly Notices of the Royal Astronomical Society, 400, 3, 1337-1346.
    Di Salvo, T., Done, C., Życki, P. T., Burderi, L., Robba, N. R. (2001). Probing the Inner Region of Cygnus X-1 in the Low/Hard State through Its X-Ray Broadband Spectrum. The Astrophysical Journal, 547, 2, 1024-1033.
    Draghis, P., Miller, J. M., Balakrishnan, M., Kammoun, E., Reynolds, A. Z. (2020). A NuSTAR Observation of the Black Hole Candidate 4U 1755-338. Retrieved from The Astronomer's Telegram, No. 13665.
    Dubus, G., Hameury, J.-M., Lasota, J.-P. (2001). The disc instability model for X-ray transients: Evidence for truncation and irradtion. Astronomy & Astrophysics, 373, 251-271.
    Esin, A. A., McClintock, J. E., Narayan, R. (1997). Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991. The Astrophysical Journal, 489, 865-889.
    Frank, J., King, A., & Raine, D. (1992). Accretion Power in Astrophysics. Cambridge, UK: Cambridge University Press.
    Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., Matilsky, T., Koch, D., Tananbaum, H. (1974). The Third UHURU Catalog of X-Ray Sources. Astrophysical Journal Supplement, 237, 27, 37-64.
    Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., Tananbaum, H. (1972). The Uhuru catalog of X-ray sources. The Astrophysical Journal, 178, 281-308.
    Grimm, H.-J., Gilfanov, M., Sunyaev, R. (2002). The Milky Way in X-rays for an outside observer Log(N)-Log(S) and luminosity function of X-ray binaries from RXTE/ASM data. Astronomy & Astrophysics, 391, 923-944.
    Hannikainen, D., Campbell-Wilson, D., Hunstead, R., McIntyre, V., Lovell, J., Reynolds, J., Tzioumis, T., Wu, K. (2001). XTE J1550–564: a superluminal ejection during the September 1998 outburst. Astrophysics and Space Science, 276, 45-48.
    Huppenkothen, D., Heil, L. M., Hogg, D. W., Mueller, A. (2017). Using machine learning to explore the long-term evolution of GRS 1915+105. Monthly Notices of the Royal Astronomical Society, 466, 2, 2364-2377.
    Jones, C. (1977). Energy spectra 43 galactic X-ray sources observed by Uhuru. The Astrophysical Journal, 214, 856-873.
    King, A. R., Kolb, U., Burderi, L. (1996). Black hole binaries and X-ray Transients. THE Astrophysical Journal, 464: L127–L130.
    Lasota, J. P. (1999). ADAFs-Models, observations and problems. Physics Reports, 311, 3-5, 247-258.
    Lasota, J.-P., Narayan, R., & Yi, I. (1996). Mechanisms for the outbursts of soft X-ray transients. Astronomy & Astrophysics, 314, 813-820.
    Liu, Q. Z., van Paradijs, J., van den Heuvel, E. P. J. (2007). A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). Astronomy & Astrophysics, 469, 807.
    Lomb, N. R. (1976). Least-Squares Frequency Analysis of Unequally Spaced Data. Astrophysics and Space Science, 39, 2, 447-462.
    Lubow, S. H. (1989). On the dynamics of mass transfer over an accretion disk. The Astrophysical Journal, 340, 1064-1072.
    Makishima, K., Maejima, Y., Mitsuda, K., Bradt, H. V., Remillard, R. A., Tuohy, I. R., Hoshi, R., Nakagawa, M. (1986). Simultaneous X-ray and Optical observations of GX 339-4 in an X-ray high state. The Astrophysical Journal, 308: 635-643.
    Mason, K. O., Parmer, A. N., & White, N. E. (1985). Simultaneous X-ray and optical observations od the X-ray dip source X1755-338. Monthly Notices of the Royal Astronomical Society, 216, 1033-1041.
    Matsuoka, M. et al. (2009). The MAXI Mission on the ISS: Science and Instruments for Monitoring All-Sky X-Ray Images. Publications of the Astronomical Society of Japan, 61, 5, 999-1010.
    McClintock, J. E., & Remillard, R. A. (2006). Black hole binaries. In Compact Stellar X-ray Sources, chap. 4, 157-214. Cambridge, England: Cambridge University Press.
    McClintock, J. E., Haswell, C. A. , Garcia, M. R., Drake, J. J., Hynes, R. I., Marshall, H. L., Muno, M. P., Chaty, S., Garnavich, P. M., Groot, P. J. (2001). Complete and Simultaneous Spectral Observations of the Black Hole X-Ray Nova XTE J1118+480. The Astrophysical Journal, 555, 477-482.
    Mereminskiy, I., Semena, A., Pavlinsky,M., Lutovinov, A., Molkov, S., Lapshov, I., Tkachenko, A., on behalf of ART-XC collaboration. (2020). ART-XC/SRG observes the awakening of BHC 4U 1755-338. Retrieved from The Astronomer's Telegram, No. 13606.
    Mitsuda, K., Inoue, H., Koyama, K., Makishima, K., Matsuoka, M., Ogawara, Y., Shibazaki, N., Suzuki, K., Tanaka, Y., Hirano, T. (1984). Energy Spectra of Low-Mass Binary X-Ray Sources Observed from Tenma. Astronomical Society of Japan, 36, 741-759.
    Motta, S., Kajava, J., Giustini, M., Williams, D., Santo, M.D., Fender, R., Green, D.A., Heywood, I., Rhodes, L., Segreto, A., Sivakoff, G., & Woudt, P. (2021). Observations of a radio-bright, X-ray obscured GRS 1915+105. Monthly Notices of the Royal Astronomical Society, 503, 152-161.
    Narayan, R., & Yi, I. (1995). Advection-Dominated Accretion: Underfed Black Holes and Neutron Stars. The Astrophysical Journal, 452, 710.
    Narayan, R., McClintock, J. E., Yi, I. (1995). A New Model for Black Hole Soft X-ray Transients in Quiescence. The Astrophysical Journal, 457, 821-852.
    Pan, H. C., Skinner, G. K., Sunyaev, R. A., Borozdin, K. N. (1995). X-ray spectrum of the black hole candidate X1755-338. Monthly Notices of the Royal Astronomical Society, 274, L15-L18.
    Pandey, U. S. (1989). X-ray absorption dips in low-mass X-ray binaries: and evidence for tidal feed back? Astronomy & Astrophysics, 221, 62-64.
    Psaltis, D. (2006). Accreting neutron stars and black holes: a decade of discoveries. In Compact Stellar X-ray Sources, chap. 1, 1-38. Cambridge, England: Cambridge University Press.
    Remillard, R. A., McClintock, J. E. (2006). X-Ray Properties of Black-Hole Binaries. Annual Review of Astronomy and Astrophysics, 44, 49-92.
    Remillard, R. A., Muno, M. P., McClintock, J. E., Orosz, J. A. (2002, December). Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations of XTE J1550–564 and GRO J1655–40. The Astrophysical Journal, 580, 2, 1030-1042.
    Roberts, M. S. E., Michelson, P. F., Cominsky, L. R., Marshall, F. E., Corbet, R. H. D., Smith, E. A. (1996). Central Bureau for Astronomical Telegrams. Retrieved from IAUC 6302: 3C 279.
    Russell, D. M., Bramich, D. M., Lewis, F., Al Mannaei, A., Al Qaissieh, T., Al Qasim1, A., Al Yazeedi1, A., Baglio1, M.C., Bernardini, F., Elgalad, N., Gabuya, A., Lasota, J.P., Palado, A., Roche, P., Shivkumar, H., Udrescu, S., Zhang, G. (2019). Optical precursors to X-ray binary outbursts. Astronomische Nachrichten, 340(4), 278-283.
    Scargle, J. D. (1982). Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263, 835-853.
    Schuster, A. (1898). On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terrestrial Magnetism, 3, 1, 13.
    Seon, K.-I., Min, K.-W., Yoshida, K., Makino, F., van der Klis, M., van Paradijs, J., Lewin, W. H. G. (1995). New Features of the X-Ray Dip Source 1755-338. The Astronomical Journal, 454, 463-471.
    Seward, F. D., & Charles, P. A. (2010). Black-hole X-ray binaries. In Exploring the X-ray Universe, chap. 12, 242-257. Cambridge, England: Cambridge University Press.
    Seward, F. D., & Charles, P. A. (2010). X-ray binaries. In Exploring the X-ray Universe, chap. 11, 171-241. Cambridge, England: Cambridge University Press.
    Shahbaz, T., Bandyopadhyay, R. M., Charles, P. A., Wagner, R. M., Muhli, P., Hakala, P., Casares, J., & Greenhill, J. (1998). An 'outside-in' outburst of Aql X-1. Monthly Notices of the Royal Astronomical Society, 300(4), 1035-1040.
    Shakura, N. I., Sunyaev, R. A. (1973). Black Holes in Binary Systems. Observational Appearance. Astronomy & Astrophysics, 24, 337-355.
    Shigeo Yamauchi, & Sakiho Maeda. (2021). Spectral and timing properties of the black hole candiadate X1755-338 observed in 1989-1995. Publications of the Astronomical Society of Japan, psab048. doi:10.1093/pasj/psab048
    Sobczak, G. J., McClintock, J. E., Remillard, R. A., Cui, W., Levine, Alan M., Morgan, E. H., Orosz, J. A., Bailyn, C. D. (2000, March). Correlations between Low-Frequency Quasi-periodic Oscillations and Spectral Parameters in XTE J1550–564 and GRO J1655–40. The Astrophysical Journal, 531, 1, 537-545.
    Tanaka, Y., Shibazaki, N. (1996). X-RAY NOVAE. Annual Review of Astronomy and Astrophysics, 34, 607-644.
    Tauris, T. M., & van den Heuvel, E. P. J. (2006). Formation and evolution of Compact Stellar X-ray Sources. In Compact Stellar X-ray Sources, chap. 16, 623-665. Cambridge, England: Cambridge University Press.
    Tomsick, J. A., Kaaret, P., Kroeger, R. A., Remillard, R. A. (1999). Broadband X-Ray Spectra of the Black Hole Candidate GRO J1655–40. The Astrophysical Journal, 512, 2, 892-900.
    Truss, M., & Wynn, G. (2004). Long time‐scale variability in GRS 1915+105. Monthly Notices of the Royal Astronomical Society, 353, 1048-1054.
    van der Klis, M. (2006). Rapid X-ray variability. In Compact Stellar X-ray Sources, chap. 2, 39-74. Cambridge, England: Cambridge University Press.
    VanderPlas, J. T. (2018). Understanding the Lomb–Scargle Periodogram. The Astrophysical Journal Supplement Series, 236:16.
    Wachter, S., Smale, Alan P. (1998). Optical Studies of the Transient Dipping X-ray Sources X1755-338 and X1658-298 in Quiescence. The Astronomical Journal, 496, L21-L24.
    Wilms, J., Nowak, M. A., Dove, J. B., Fender, R. P., Di Matteo, T. (1999). Low-Luminosity States of the Black Hole Candidate GX 339–4. I. ASCA and Simultaneous Radio/RXTE Observations. The Astrophysical Journal, 522, 460-475.

    QR CODE