研究生: |
古皓偉 |
---|---|
論文名稱: |
低溫共燒陶瓷系統的束縛燒結 |
指導教授: | 簡朝和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
中文關鍵詞: | 鋇硼矽玻璃 、低溫共燒陶瓷 、束縛燒結 、氧化鋁生胚 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以添加氧化鋁的鋇硼矽可結晶玻璃為主要系統,利用氧化鋁生胚做為束縛層的方法,研究束縛燒結與自由燒結在相同的升溫速率下,緻密化過程與最終所能達到緻密度的差異。研究結果顯示,束縛燒結與自由燒結間並沒有明顯的差異,若從黏性分析的角度來看,在比較由非接觸式雷射光學系統所推算出之束縛燒結下的黏度值;和由熱機械分析儀估算出在自由燒結下的黏度□,發現兩者在趨勢與數量級皆相近,且伴隨著結晶相BaAl2Si2O8的產生,都會使得黏度值有一明顯的劇烈增加。
此外,由於束縛燒結時,束縛層的目的在於提供一平面張應力,用以抵銷於燒結過程中X-Y平面的燒結驅動力(Driving force),達到束縛燒結的效果。若將根據非接觸式雷射光學系統所求得之實驗上的平面張應力,與熱機械分析儀所得之理論平面張應力作一比較,可看出兩者皆有著同樣的趨勢與差異不大的數值。且若由此平面張應力與輔以黏性流動構成方程式推得之燒結驅動力的比值看來,實驗值與理論值有一良好的近似性,因此在平面張應力較燒結驅動力為小的情況之下,使得束縛燒結時試片並沒有發生如脫層、破裂等缺陷,亦使得此系統在束縛燒結下能得到與自由燒結時相同的緻密結果。
[1] B. Geller, B. Thaler, A. Fathy, M.J. Liberatore, H.D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enable Technology for High Performance Multilayer RF System,” J. Microwave, 7, 64-72 (1999).
[2] W.A. Vitrio and R.L. Brown, “Process for Fabricating Dimensionally Stable Interconnect Boards,” US patent No. 4,656,552, (1987).
[3] C.C. Huang and J.H. Jean, ”Stress requires for Constrained sintering of a ceramic-filled glass composites,” J. Am. Ceram. Soc., 87 [8] 1454-1458 (2004).
[4] J. Bang and G.Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In-situ Measurement of Film Stress,” J. Am. Ceram. Soc., 78 [3] 813-815 (1995).
[5] T.J. Garino and H.K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-317 (1987).
[6] T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-257 (1990).
[7] G.W. Scherer and T. Garinio, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68 [4] 216-220 (1985).
[8] R.K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6] 287-292 (1985).
[9] K.R. Mikeska and D.T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” US patent 5,454,741, 1994.
[10] S.Y. Tzeng and J.H. Jean, “Stress development during Constrained Sintering of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-340 (2002).
[11] Y.C. Lin and J.H. Jean, “Constrained Densification Kinetics of Alumina / Borosilicate Glass + Alumina / Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-154 (2002).
[12] R.K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,” J. Am. Ceram. Soc., 76 [10] 2475-2485 (1993).
[13] C.D. Lei and J.H. Jean, “Effect of Crystallization on the stress Required for Constrained Sintering of CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 88 [3] 599-603 (2005).
[14] R.K. Bordia and G.W. Scherer, “On Constrained Sintering-I. Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-2397 (1988).
[15] R.K. Bordia and G.W. Scherer, “On Constrained Sintering-II. Comparison of Constitutive Model,” Acta. Metall., 36 [9] 2399-2409 (1988).
[16] R.K. Bordia and G.W. Scherer, “On Constrained Sintering-III. Rigid Inclusions,” Acta. Metall., 36 [9] 2411-2416 (1988).
[17] V.C. Ducamp and R. Raj, “Shear and Densification of Glass Powder Compacts,” J. Am. Ceram. Soc., 72 [5] 798-804 (1989).
[18] P.Z. Cai, G.L. Messing and D.L. Green, “Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80 [2] 445-452 (1997).
[19] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-1655 (1989).
[20] M. Ohring, “The Materials Science of Thin Films,” (Academic Press, Inc., San Diego, CA, 1992), pp. 416-418.