研究生: |
廖軒裕 Liao, Hsuan-Yu |
---|---|
論文名稱: |
有色約束生成樹問題:難解的情況 The Colored Constrained Spanning Tree Problem: Intractable Conditions |
指導教授: |
韓永楷
Hon, Wing-Kai |
口試委員: |
蔡孟宗
Tsai, Meng-Tsung 王弘倫 Wang, Hung-Lung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 邊著色圖 、生成樹 、顏色限制 、NP困難性 |
外文關鍵詞: | edge-colored graph, spanning tree, colored constraint, NP-hardness |
相關次數: | 點閱:49 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研究「邊著色圖」上的「有色約束生成樹問題」和「出度有色約束生成樹問題」。這些問題旨在尋找一個生成樹,其中每個節點的任意特定顏色的鄰邊(或出邊),其邊數不超過一個給定的常數。我們證明了當輸入的圖為有向圖時,這兩個問題皆為NP困難。此外,即使輸入為有向無環圖時,有色約束生成樹問題仍然是NP困難的。
In this thesis, we study the Colored Constrained Spanning Tree Problem (CCST problem) and the Colored Out-Constrained Spanning Tree Problem (COCST problem) on edge-colored graphs.
These problems aim to find a spanning tree such that for each vertex, the number of incident edges (or outgoing edges) sharing any specific color is bounded by a constant.
We demonstrate the NP-hardness of both problems when the input graphs are directed graphs.
Additionally, even when considering directed acyclic graphs (DAGs) as input, the CCST problem remains NP-hard.
[1] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive Guarantees for Degree-Bounded Directed Network Design. SIAM Journal on Computing, 39(4):1413–1431, 2010.
[2] V. Borozan, W. Fernandez de La Vega, Y. Manoussakis, C. Martinhon, R. Muthu, H.P. Pham, and R. Saad. Maximum Colored Trees in Edge-Colored Graphs. European Journal of Combinatorics, 80:296–310, 2019.
[3] Yangyang Cheng, Mikio Kano, and GuanghuiWang. Properly Colored Spanning Trees in Edge-Colored Graphs. Discrete Mathematics, 343(1):111629, 2020.
[4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
[5] Jerrold W Grossman and Roland H¨aggkvist. Alternating Cycles in Edge-Partitioned Graphs. Journal of Combinatorial Theory, Series B, 34(1):77–81, 1983.
[6] Mikio Kano, Shunichi Maezawa, Katsuhiro Ota, Masao Tsugaki, and Takamasa Yashima. Color Degree Sum Conditions for Properly Colored Spanning Trees in Edge-Colored Graphs. Discrete Mathematics, 343(11):112042, 2020.
[7] Mikio Kano and Masao Tsugaki. Rainbow and Properly Colored Spanning Trees in Edge-Colored Bipartite Graphs. Graphs and Combinatorics, 37(5):1913–1921, 2021.
[8] Kazuhiro Suzuki. A Necessary and Sufficient Condition for the Existence of a Heterochromatic Spanning Tree in a Graph. Graphs and Combinatorics, 22(2):261–269, 2006.
[9] Anders Yeo. A Note on Alternating Cycles in Edge-Coloured Graphs. Journal of Combinatorial Theory, Series B, 69(2):222–225, 1997.