簡易檢索 / 詳目顯示

研究生: 廖軒裕
Liao, Hsuan-Yu
論文名稱: 有色約束生成樹問題:難解的情況
The Colored Constrained Spanning Tree Problem: Intractable Conditions
指導教授: 韓永楷
Hon, Wing-Kai
口試委員: 蔡孟宗
Tsai, Meng-Tsung
王弘倫
Wang, Hung-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 26
中文關鍵詞: 邊著色圖生成樹顏色限制NP困難性
外文關鍵詞: edge-colored graph, spanning tree, colored constraint, NP-hardness
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研究「邊著色圖」上的「有色約束生成樹問題」和「出度有色約束生成樹問題」。這些問題旨在尋找一個生成樹,其中每個節點的任意特定顏色的鄰邊(或出邊),其邊數不超過一個給定的常數。我們證明了當輸入的圖為有向圖時,這兩個問題皆為NP困難。此外,即使輸入為有向無環圖時,有色約束生成樹問題仍然是NP困難的。


    In this thesis, we study the Colored Constrained Spanning Tree Problem (CCST problem) and the Colored Out-Constrained Spanning Tree Problem (COCST problem) on edge-colored graphs.
    These problems aim to find a spanning tree such that for each vertex, the number of incident edges (or outgoing edges) sharing any specific color is bounded by a constant.
    We demonstrate the NP-hardness of both problems when the input graphs are directed graphs.
    Additionally, even when considering directed acyclic graphs (DAGs) as input, the CCST problem remains NP-hard.

    Abstract (Chinese) i Abstract ii Acknowledgment iii Contents v 1 Introduction 1 1.1 Thesis Organization . . . . . . . . . . . . . . . 2 1.2 Related Work . . . . . . . . . . . . . . . . . . . 2 1.3 Definitions . . . . . . . . . . . . . . . . . . . 3 1.4 Our Contributions . . . . . . . . . . . . . . . . 4 2 The κ-CCST Problem on DAGs 6 2.1 Proof of Claim 1 . . . . . . . . . . . . . . . . . 11 2.2 Proof of Claim 2 . . . . . . . . . . . . . . . . . 12 2.3 Extending to Bipartite Graphs . . . . . . . . . . 14 3 The κ-COCST Problem on Directed Graphs 15 3.1 Reducing κ-CCST to κ-COCST . . . . . . . . . . . 16 3.2 Proof of Claim 3 . . . . . . . . . . . . . . . . . 18 3.3 Proof of Claim 4 . . . . . . . . . . . . . . . . . 20 4 Conclusion 23

    [1] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive Guarantees for Degree-Bounded Directed Network Design. SIAM Journal on Computing, 39(4):1413–1431, 2010.
    [2] V. Borozan, W. Fernandez de La Vega, Y. Manoussakis, C. Martinhon, R. Muthu, H.P. Pham, and R. Saad. Maximum Colored Trees in Edge-Colored Graphs. European Journal of Combinatorics, 80:296–310, 2019.
    [3] Yangyang Cheng, Mikio Kano, and GuanghuiWang. Properly Colored Spanning Trees in Edge-Colored Graphs. Discrete Mathematics, 343(1):111629, 2020.
    [4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
    [5] Jerrold W Grossman and Roland H¨aggkvist. Alternating Cycles in Edge-Partitioned Graphs. Journal of Combinatorial Theory, Series B, 34(1):77–81, 1983.
    [6] Mikio Kano, Shunichi Maezawa, Katsuhiro Ota, Masao Tsugaki, and Takamasa Yashima. Color Degree Sum Conditions for Properly Colored Spanning Trees in Edge-Colored Graphs. Discrete Mathematics, 343(11):112042, 2020.
    [7] Mikio Kano and Masao Tsugaki. Rainbow and Properly Colored Spanning Trees in Edge-Colored Bipartite Graphs. Graphs and Combinatorics, 37(5):1913–1921, 2021.
    [8] Kazuhiro Suzuki. A Necessary and Sufficient Condition for the Existence of a Heterochromatic Spanning Tree in a Graph. Graphs and Combinatorics, 22(2):261–269, 2006.
    [9] Anders Yeo. A Note on Alternating Cycles in Edge-Coloured Graphs. Journal of Combinatorial Theory, Series B, 69(2):222–225, 1997.

    QR CODE