簡易檢索 / 詳目顯示

研究生: 顏存濱
論文名稱: Inconel 625超合金於超臨界水環境下氧化層結構變化之研究
Study on Scale Constitution and Oxidation Mechanism of Inconel 625 in 〝SCWR〞
指導教授: 開執中
陳福榮
葉宗洸
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: Inconel 625supercritical wateroxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    超臨界水反應器(supercritical water-cooled reactor, SCWR)為第四代核能反應器之一,其操作環境高於水的臨界點,溫度必須超過374℃且壓力高於22.1 MPa。相對於現今輕水式反應器,超臨界水反應器的設計簡化使得安全性提高且降低成本,且超臨界水反應器操作在相當高溫的環境,因而提供相當高的熱效率,大約為45%(現今輕水式反應器熱效率約為33%)。
    Inconel 625 鎳基超合金在8.3ppm的溶氧量之超臨界水環境中,600℃之實驗結論推測孔蝕與原有的(Nb,Ti)C析出相有關,並且利用300、600及1000小時的單位面積質量變化量得到一趨勢線,w2.21=1.4×10-5 t,符合拋物線律。而氧化層分析呈現兩層結構外層為spinel Ni(Cr,Fe)2O4,內層為spinel Ni(Cr,Fe)2O4加上Cr2O3組成緻密連續的氧化層。利用SEM量測平均氧化層厚度,得到一趨勢線,log(x)=0.432log(t)-1.2334,與 xn=kt 做比較,可得到Reaction order n=2.32。
    本實驗接續600℃,進行較低溫400℃與500℃之實驗,未發現有γ”相的存在,更進一步證實孔蝕與原有的(Nb,Ti)C析出相有關。氧化層分析:在400℃之氧化層可分為兩層結構,外層為奈米級尺寸的NiO顆粒,NiO氧化物平均尺寸 d值趨勢線log(d) = 0.3378t +1.4873,方程式與 wn=kt 比較,得到n=2.96;內層則是由緻密且連續的spinel Ni(Cr,Fe)2O4,內層氧化層趨勢線log(L) = 0.5647t + 0.0673與 wn=kt 比較,得到n=1.77,趨近於n=2,符合拋物線率。而500℃之氧化層也分為兩層結構,表面有大約0.5μm大小的氧化鉻顆粒存在;而600℃之氧化層厚度相對於500℃較厚,鎳與鉻無法擴散至表面形成單一氧化物之情況下,氧化層則僅形成單一spinel Ni(Cr,Fe)2O4,且隨著氧往內擴散在內層形成spinel Ni(Cr,Fe)2O4加上Cr2O3組成緻密連續的氧化層。


    Supercritical water-cooled reactor (SCWR) is one of the various fourth-generation nuclear reactors. The temperature of its operating environment must exceed 374 ℃ and the pressure is higher than 22.1 MPa which was above the critical point of water. Compared with the light-water reactor, SCWR has some advantages such like its design for safe improvement, reduce costs and so on. In addition, supercritical water reactor operates at very high temperature, according to this, it can provide a very high thermal efficiency, about 45% (nowadays, the light water reactor thermal efficiency is about 33%).
    Inconel 625 Ni-base superalloy was set in the environment of supercritical water which dissolved oxygen 8.3ppm and 600℃. According to experimental results, suggesting that pitting was related to the original (Nb, Ti)C precipitates phase. And the change in mass per unit area of 300,600 and 1000 hours showed a trend line, w2.21 = 1.4 × 10-5 t, consistent with the parabolic law. The result of oxide layer analysis experiment result showed a continuous and compact oxide layer structure which was composed of spinel Ni (Cr, Fe)2O4 in the outer layer and spinel Ni(Cr, Fe)2O4 with Cr2O3 in the inner layer. SEM measures the average oxide layer thickness, we obtained a trend line, log (x) = 0.432log (t) -1.2334. Comparing our result with xn = kt, Reaction order n will be 2.32.
    experiment showed γ "phase would not exist at 400 and 500℃, further evidence revealed great agreement for pitting with the original (Nb, Ti) C precipitates phase.
    Oxide layer analysis of the parameter of 400 ℃ experiment, the oxide layer can be divided into two layers. Outer layer was composed of NiO nano-size particles, its average size d fitted the following formula: (d) = 0.3378t +1.4873. The equation compares with wn = kt, and obtained n = 2.96. Inner layer was composed of a continuous spinel Ni (Cr, Fe)2O4, which that average size L fitted following formula: (L) = 0.5647t 0.0673 compared with wn = kt. We also obtained n = 1.77 (when n = 2, the above equation was a parabolic line).
    In the experiment of oxide layer analysis under 500 ℃, the oxide layer also can be divided into two layers. However, there were chromium oxide particles on its surface, which average size was about 0.5 μm. Because the thickness of the oxide layer at 600 ℃ is thicker than its at 500 ℃, nickel and chromium can’t diffuse to the surface and form single oxide layer. The single oxide layer is spinel Ni(Cr,Fe)2O4, and it forms a continuous compact oxide layer structure that composed of spinel Ni(Cr, Fe)2O4 and Cr2O3, due to the oxygen diffusion.

    章節目錄 章節 頁次 摘要 I 章節目錄 III 表目錄 V 圖目錄 VI 第一章 前言及研究動機 1 第二章 文獻回顧 9 2-1超臨界水的物理與化學性質 9 2-1.1孔蝕(Pitting corrosion) 9 2-1.2一般腐蝕(General corrosion) 10 2-1.3晶粒間腐蝕(Intergranular corrosion) 10 2-1.4應力腐蝕龜裂(Stress corrosion cracking) 10 2-2超臨界水的溶液因子與材料因子 11 2-2.1離子反應與氧化層的穩定性 11 2-2.2溫度 11 2-2.3pH值:化學溶解 12 2-2.4電化學電位及氣體溶解度 13 2-2.5低腐蝕性的pH值-電化學電位範圍 13 2-2.6合金組成(不鏽鋼與鎳基合金) 13 2-2.7熱處理(不鏽鋼與鎳基合金) 14 2-3金屬材料於超臨界水環境之腐蝕行為 15 2-3.1肥粒麻田鐵 15 2-3.2奧斯田不鏽鋼 16 2-3.3鎳基超合金 17 2-4超合金發展與應用 19 2-4.1鎳基超合金的強化機制 19 2-4.2超合金Inconel 625發展與應用 2 第三章 實驗原理與方法 49 3-1 腐蝕實驗 49 3-1.1超臨界水循環系統 49 3-1.2實驗步驟 50 3-1.3溶氧儀與導電度儀校正 51 3-1.4試片製備 52 3-1.5 TEM試片製備 52 3-2 實驗分析 53 3-2.1電子顯微鏡簡介 53 3-2.2電子束與物質交互作用 54 3-2.3 電子顯微鏡系統 56 3-2.4 X-光能量分散光譜儀(EDS) 57 第四章 實驗結果與討論 65 4-1腐蝕動力學 65 4-2表面分析 66 4-3氧化層分析 67 4-3.1微結構鑑定 67 4-3.2微結構隨溫度變化之改變 69 第五章 結論 92 第六章 未來研究方向 94 參考文獻 95 表目錄 表2-1 Iinconel 625在酸性、中性及鹼性溶液,合金元素的釋放濃度。(Tmax = 350 ℃; p = 24 MPa; [O2] = 0.5 mol/kg; [HCl] = [NaCl] = [NaOH] = 0.05 mol/kg) 47 表2-2 第四代核能反應器候選材料 47 表2-4 Inconel 625組成成分 47 表2-5 Inconel 625 內析出物之結構與組成成分 48 表3-1 清華大學材料所GIXRD 設備簡介 64 表4-1 EDX分析as-received Inconel 625[49] 72 表4-2 Inconel 625 試片實驗前之表面積以及實驗後的重量改變(400℃) 72 表4-3 Inconel 625 試片實驗前之表面積以及實驗後的重量改變(500℃) 73 表4-4 統計後,400℃環境下孔蝕的密度與大小 73 表4-5 Inconel 625 經孔蝕的質量減少後的重量增加 73 表4-6 d-ratio for NiO crystal (a0=4.18Å) 74

    [1] http://www.grida.no/climate/ipcc_tar/slides/index.htm
    [2] 謝得志, ”核能溝通”, 於清華大學演講, (4/3/2009)
    [3] Energy Technology Perspectives – Scenarios and Strategies to 2050. IEA/OECD, Paris, 17 Jun 2008 .
    [4] David Guzonas, “ SCWR MATERIAL AND CHEMISTRY STATUS OF ONGOING RESEARCH ” GIF Symposium-Paris(France)-9-10 September, 2009.
    [5] Supercritical Water Reactor (SCWR) Survey of Materials Experience and R&D Needs to Assess Viability, INEEL/EXT-03-00693 Revision 1, September 2003.
    [6] Cool Earth-Innovative Energy Technology Program,
    [7] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, “Corrosion and stress corrosion cracking in supercritical water”, Journal of Nuclear Materials 371(2007) 176-201.
    [8] P. Kritzer, in: SCR-2000, 6–8 November, 2000, Tokyo.
    [9] K. Johnston and C. Haynes, Am. Inst. Chem. Eng. J. 33, (1987) 2017.
    [10] P. Kritzer, “Corrosion in high-temperature and supercritical water and aqueous solutions: a review”, The journal of Supercritical Fluids 29(2004)1-29.
    [11] P. Kritzer, N. Boukis, and E. Dinjus, “Transpassive Dissolution of Alloy 625, Chromium, Nickel, and Molybdenum in High-Temperature Solutions Containing Hydrochloric Acid and Oxygen”, Corrosion 56 (2000) 265.
    [12] P. Kritzer, Die Korrosion der Nickel-Basis-Legierung 625 unter hydrotherm alen Bedingungen, Report FZKA 6168, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany, 1998, 180 pp.
    [13] W.F. Bogaerts and C. Bettendorf, Electrochemistry and Corrosion of Alloys in High-Temperature Water, EPRI Report NP-4705, Electric Power Research Institute, Palo Alto, CA, 1986.
    [14] W.F. Bogaerts and C. Bettendorf, High-Temperature Electro-chemistry and Corrosion, EPRI-Report NP-5863, Electric Power Research Institute, Palo Alto, CA, 1988.
    [15] T.M. Seward and E.U. Franck, The system hydrogen–water up to 440 ◦C and 2500 bar pressure, Ber. Bunsenges Phys. Chem. 85 (1981) 2.
    [16] M.L. Japas and E.U. Franck, High pressure phase equilibria and PVT-data of the water–oxygen system including water–air to 673 K and 250 MPa, Ber. Bunsenges Phys. Chem. 89 (1985) 1268.
    [17] S. Huang, K. Daehling, T.E. Carleson, P. Taylor, C. Wai and A. Propp, Thermodynamic analysis of corrosion of iron alloys in supercritical water, in: Supercritical Science and Technology, ACS Symposium Series 406, American Chemical Society, Washington DC, 1989, p. 276.
    [18] L.B. Kriksunov and D.D. Macdonald, Corrosion in supercritical water oxidation systems: a phenomenological analysis, J. Electrochem. Soc. 142 (1995) 4069.
    [19] L.B. Kriksunov and D.D. Macdonald, Corrosion testing and L.B. Kriksunov, D.D. Macdonald, Corrosion testing and ASME Heat Transfer Division, The American Society of Mechanical Engineers, New York, 1995, p. 281.
    [20] F. Matthews and E.F. Gloyna, Corrosion Behavior of Three High-Grade Alloys in Supercritical Water Oxidation High-Grade Alloys in Supercritical Water Oxidation Environments, Report CRWR 234, Center for Research in Water Resources, Bureau of Engineering Research, University of Texas in Austin, Austin, TX, 1992, 73 pp.
    [21] K.W. Downey, R.H. Snow, D.A. Hazlebeck, and A.J. Roberts, Corrosion and chemical agent destruction, in: K.W. Hutchenson, N.R. Foster (Eds.), Research on Supercritical Water Oxidation Oxidation of Hazardous Military Wastes, ACS Symposium Series 608, ACS, Washington, DC, 1995, p. 313.
    [22] D.M. Harradine, S.J. Buelow, P.C. DellOrco, R.B. Dyer, B.R. Foy, and J.M. Robinson, Oxidation chemistry of energetic materials in supercritical water, Hazardous Waste Hazardous Mater. 10 (1993) 233.
    [23] D.B. Mitton, J.C. Orzalli, and R.M. Latanision, Corrosion phenomena associated with SCWO systems, in: G. Brunner, M. Perrut (Eds.), Proceedings of the 3rd International Symposium on Supercritical Fluids, Strasbourg, France, 1994, p. 43.
    [24] S.F. Rice, R.R. Steeper, and C.A. LaJeunesse, Destruction of Representative Navy Wastes Using Supercritical Water Oxidation, Final Report, Sandia National Laboratories, Livermore, CA, 1994, 35 pp.
    [25] T. Adschiri, K. Sue, K. Arai, and Y. Watanabe, Estimation of metal oxide solubility and understanding corrosion in supercritical water, Corrosion 2001, NACE National Association of Corrosion Engineers, Houston, TX, Paper no. 1354, 2001.
    [26] Y. Watanabe, K. Shoji, T. Adschiri, and K. Sue, Effects of oxygen concentration on corrosion behavior of alloys in a acidic supercritical water, Corrosion 2002, NACE National Association of Corrosion Engineers, Houston, TX, Paper no. 2355, 2002.
    [27] D. Broll, C. Kaul, A. Kramer, P. Krammer, T. Richter, M. Jung, H. Vogel, and P. Zehner, Chemistry in supercritical water, Angew. Chem. Int. Ed. Engl. 38 (1999) 2999.
    [28] K.P. Johnston and P.J. Rossky, Solution chemistry in supercritical water: spectroscopy and simulation, in: E. Kiran, P.G. Debenedetti, C.J. Peters (Eds.), Supercritical Fluids—Fundamentals and Applications, NATO Science Series E, Vol. 366, Kluwer Publishers, Dodrecht, 2000, p. 323.
    [29] A.A. Chialvo and P.T. Cummings, Molecular simulation and modeling of supercritical water and aqueous solutions, in: E. Kiran, P.G. Debenedetti, C.J. Peters (Eds.), Supercritical fluids—fundamentals and applications, NATO Science Series E, Vol. 366, Kluwer Publishers, Dodrecht, 2000, p. 345.
    [30] P. Kritzer, N. Boukis, and E. Dinjus, Corrosion of alloy 625 in aqueous chloride and oxygen containing solutions, Corrosion 54 (1998) 824.
    [31] H. Yakuwa, M. Miyasaka, S. Iimura, Effect of Cr and Mo contents on the corrosion properties of Ni-base alloys in the supercritical water including chloride, Corrosion 2002, NACE National Association of Corrosion Engineers, Houston, TX, Paper no. 2361, 2002.
    [32] Z. Szklarska-Smialowska, Pitting Corrosion of Metals, NACE National Association of Corrosion Engineers, Houston, TX, 1986, P430.
    [33] K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, Journal of Nuclear Materials 383 (2008) 189–195.
    [34] T. R. Allen, K. Sridharan, Y. Chen, L. Tan, X. Ren, and A. Kruizenga, Research and Development on Materials Corrosion Issues in Supercritical Water, P R E P R I N T – ICPWS XV, Berlin, September 8–11, 2008.
    [35] L. Tan, Y. Yang,and T.R. Allen, Corrosion Sci., in press.S. Kasahara, GENES4/ANP2003, paper 1132, Kyoto,Japan, September, 2003.
    [36] L. Tan, Y. Yang,and T.R. Allen, Corrosion Sci., in press.S. Kasahara, GENES4/ANP2003, paper 1132, Kyoto,Japan, September, 2003.
    [37] J. Jang, C. H. Han, B. H. Lee, Y. S. Yi,and S. S. Hwang, in: Proceedings of ICAPP’05, Seoul, Korea,Paper 5136, May, 2005.
    [38] J. Kaneda, S. Kasahara, J. Kuniya, K. Moriya, F. Kano, N. Saito, A. Shioiri, T. Shibayama,and H. Takahashi, in: Proceedings of ICAPP’05, Seoul, Korea,Paper 5594, May, 2005.
    [39] P. Ampornrat,and G. S. Was,”Oxidation of ferritic–martensitic alloys T91, HCM12A and HT-9 in supercritical water”, Journal of Nuclear Materials 371 (2007) 1–17.
    [40] B. Dooley, B. Larkin, L. Webb, F. Pocock,and A. Bursik, Oxygenated treatment for fossil plants Proceedings of 16th International Water Conference, vol. 53, Engineers Society of Western Pennsylvania, 1992.
    [41] B. Dooley, J. Mathews, R. Pate,and J. Taylor, Ultrapure-water 48(July/August) (1995), P.48.
    [42] G.S. Was,and T.R. Allen,in Proceedings of ICAPP '05 Seoul, KOREA, May 15-19, 2005, Paper 5690.
    [43] G.S. Was, S. Teysseyre, and Z. Jiao,” Corrosion of Austenitic Alloys in Supercritical Water”, Corrosion, Vol. 62, No. 11 (2006) 989-1005.
    [44] M. Sun, X. Wu, E.-H. Han, and J. Rao, Microstructural characteristics of oxide scales grown on stainless steel exposed to supercritical water, Scripta Materialia 61 (2009) 996–999.
    [45] Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC, Final Report – 12th Quarterly Report, 2005.
    [46] L. Tan, X. Ren, K. Sridharan,and T.R. Allen, ”Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants”, Corrosion Science 50 (2008) 3056–3062.
    [47] 黃日鉉,國立清華大學工程與系統科學研究所碩士論文,2009.
    [48] M. Sun, X.Wu, Z.n Zhang, E.-H. Han, “Analyses of oxide films grown on Alloy 625 in oxidizing supercritical water”, The Journal of Supercritical Fluids 47 (2008) 309-317.
    [49] C. T. Sims and W. C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972.
    [50] N. F. Mott and F. R. N. Nabarro, Report of the Conference on Strength of Solids, Physical Society, (1948)1-19.
    [51] R. M. N. Pelloux and N. J. Grant, Trans. Met. Soc. AIME, 218 (1960) 232-237.
    [52] R. L. Fleischer, Acta Met., 11 (1963) 203-209.
    [53] R. G. Davies and N. S. Stoloff, Trans. Met. Soc. AIME, 233 (1965) 714-719.
    [54] N. S. Stoloff and R. G. Davies, Prog. Mat. Sci., 13, No. 1 (1966) 3-84.
    [55] P. Beardmore, R. G. Davies, and T. L. Johnston, Trans. Met. Soc. AIME, 245 (1969) 1537-1545.
    [56] R. G. Davies and T. L. Johnston, Ordered Alloys: Structural Applications and Physical Metallurgy, Claitors, Baton Rouge, Louisiana, (1970) 447-470.
    [57] S. M. Copley and B. H. Kear, Trans. Met. Soc. AIME, 239 (1967) 984-992.
    [58] C. L. Corey and B. Lisowsky, Trans. Met. Soc. AIME, 239 (1967) 239-243.
    [59] G. R. Leverant, M. Gell, and S. W. Hopkins, Proc. Second Int. Conf. Strength Met. Alloys, 3 (1970) 1141-1144.
    [60] F.F. Barder, Discussion of : Eiselstein, H.L., in Advances in the Technology of Stainless Steels and Related Alloys, STP 369, ASTM, Philadelphia, Pa., (1965) 78-79.
    [61] H.J.Wagner and A.M.Hall, “Physical Metallurgy of Alloy 718”, DMIC Report 217, Battelle Memorial Institute, Columbus, Ohio, (June 1, 1965).
    [62] J.F. Bader, Metal Progress, 81 (May, 1962) 72-76.
    [63] R.F. Decker, and J.R. Mihalisin, Trans. ASM, 62 (1969) 481-489.
    [64] D.F. Paulonis, F.M. Oblak, and D.S. Duvall, Trans. ASM, 62 (1969) 611-622.
    [65] I. Kirman and D.H. Warrington, Met. Trans., 1 (1970) 2667-2675
    [66] Superalloys 718, 625, 706 and Various Derivatives sponsored by the Minerals, Metals & Materials Society and cosponsored by ASM International and National Association of Corrosion Engineers, held June 26-29, 1994 / edited by E.A. Loria.
    [67] Vani Shankar, ”Microstructure and mechanical properties of Inconel 625 superalloy”, Journal of Nuclear Materials 288 (2001) 222–232.
    [68] J. Mittra, “Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel 625”, Scripta Materialia 49, (2003)1209–1214.
    [69] 吳聲旺,國立清華大學工程與系統科學研究所碩士論文,2007.
    [70] 鮑忠興,劉思謙,近代穿透式電子顯微鏡實務, 滄海(1998).
    [71] 科儀叢書3, 材料電子顯微鏡學, 國科會精密儀器發展中心.
    [72] 汪建民, 杜正恭, 材料分析, 中國材料科學學會 (1998).
    [73] S. Kashahara, J. Kuniya, K. Moriya, N. Saito, and S. Shiga, GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN, Paper 1132.
    [74] J. C. Orzalli, Preliminary Corrosion Studies of Candidate Materials for Supercritical Water Oxidation Reactor Systems, Master of Science in Materials Science and Engineering at the Massachusetts Institute of Technology 1994.
    [75] F. Fievet, P. Germi, F. de Bergevin and M. Figlarz, Lattice Parameter, Microstrains and Non-Stoichiometry in NiO. Comparison between Mosaic Microcrystals and Quasi-Perfect Single Microcrystals, J. Appl. Cryst. (1979), vol.12, 387-394.
    [76] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996).
    [77] H. M. Tawancy, ”Practical engineering failure analysis” New York : Marcel Dekker , (2004) 381.
    [78] J. Robertson, The mechanism of high temperature aqueous corrosion of steel, Corros. Sci. 29 (1989) 1275–1291.
    [79] M.J. Graham,and R.J. Hussey, Transport in growing oxide films, in: M.A. Dayananda, S.J. Rothman,and W.E. King (Eds.), Oxidation of Metals and Associated Mass Transport, The Metallurgical Society, Inc., Warrendale, PA, 1987, p. 85.
    [80] X. Ren, K. Sridharan,and T.R. Allen, Corrosion behavior of alloys 625 and 718 in supercritical water, Corrosion 63 (2007) 603–612.
    [81] Introduction to high temperature oxidation of metals / N. Birks, G.H. Meier, and F.S. Pettit. London : E. Arnold, 2005.
    [82] Anwar Ul- Hamid, A TEM study of the oxide scale development in Ni- Cr alloys, Anti- Corrosion Methods and Materials, vol 51, No.3, 2004, pp. 216- 222.
    [83] K.I. Hirano, R. P. Agarwala, B. L. Averbach, and M.Cohen, Diffusion in Cobalt-Nickel Alloys, Journal of Applied Physics, vol. 33, No. 10 October 1962.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE