簡易檢索 / 詳目顯示

研究生: 戴賢明
Hsien-Ming Tai
論文名稱: 靜電式大角度CMOS微鏡面之研製
Design and Fabrication of Electrostatic large-scan Angle Micromirror with CMOS-MEMS
指導教授: 周懷樸
Hwai-Pwu Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 71
中文關鍵詞: 微鏡面殘餘應力CMOS MEMS
外文關鍵詞: Micro-Mirror, CMOS MEMS, residual stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點在於設計一個大出平面位移值、靜電式自然翹曲梳狀結構的微鏡面,並且受降低製程時誤差的影響,在製作大位移之微鏡面時,許多製程技術已經被發展,會因CMOS製程時所產生的誤差所影響,所設計之微鏡面元件,不但保留住大位移的優點,並且在翹曲結構的兩端設計一小彈簧以將低CMOS製程時所產生的誤差。
    微鏡面的製作是採用TSMC所提供的0.35um 2P4M 標準CMOS製程,並自行進行兩道蝕刻步驟的後製程,完成元件的製作。此微結構有兩個驅動點的優點,當元件殘餘應力釋放完畢後,梳狀結構會產生自然翹曲,鏡面兩側的梳狀結構,其中一組梳狀結構會使鏡面向上轉動,另一組梳狀結構則是讓鏡面向下轉動,由兩組梳狀結構交互作用可使鏡面產生順時鐘或是逆時鐘的旋轉。
    在實驗的過程中,我們定義鏡面的尺寸為500um × 500um由metal1-4組成,小彈簧的尺寸為4um × 21um由metal1及poly1組成,鏡面元件的自然共振頻率為727Hz,當輸入電壓為25V時,最大出平面的位移值為32um,小彈簧結構的設計,可成功將製程時所造成的誤差由30%降低為10%。


    This paper presents a large displacement static- electricity curled-hinge comb micro-mirror with low process variability effect. Many fabrication techniques have been developed to produce mirrors in large displacement, which were influenced by the variation in CMOS MEMS process. We not only present a large electrically actuated out-of-plane displacement, but also additial a micro-spring on the side of the finger. It can decrease the influence of the variation in CMOS MEMS process.
    The developed procedure is a standard TSMC 0.35um 2p4m process. The metal-1 spring has only thin layers of interconnect aluminum and dielectrics. The mirror was made by metal1~4. This micro-structure has advantage of these two anchor options. The comb drives curls up after it is released. One comb drives pull the mirror up, and another comb drives pull the mirror down. The two sets of each comb drive double the Y-axis torque and zero the net Z-axis force. The comb drives rotate the mirror clockwise, and rotate the mirror counterclockwise.
    In the experimental stage, we have formulated a mirror for 500um x 500um and made by metal1~4. The micro-spring were used metal 1 and poly1 and its size was 4um x 21um. The nature frequency is 727Hz and the maximum displacement of this micromirror is 32um with 25V dc. The variation among each batch of production was reduced from 30% to 10%. The major contribution to the efficiency is due to the size of the micro-spring.

    摘要..........................i 致謝..........................iv 目錄..........................v 圖目錄.........................viii 表目錄.........................xii 第一章 緒論.......................1 1.1 前言.....................1 1.2 CMOS MEMS 現況簡介..............2 1.3 研究動機與目的................6 第二章 微鏡面製程技術回顧................7 2.1 微致動器致動方式...............7 2.2 靜電式電極板驅動之微鏡面...........10 2.2.1數位微型反射鏡元件(DMD) ........10 2.2.2扭力型微鏡面元件............11 2.3光阻回流式直立微鏡面.............13 2.4靜電式梳狀結構驅動之微鏡面..........14 2.5電熱式驅動之微鏡面..............16 2.5.1利用壓電材料致動............16 2.5.2 利用熱材料係數不同.... ......18 2.6整合標準CMOS製程之微鏡面 ..... .....20 第三章 自然翹曲之梳狀微鏡面設計........ ....21 3.1設計概念...................21 3.2設計原理...................22 3.2.1 梳狀結構設計原理....... ....22 3.2.2 彈簧結構設計原理....... ....27 3.3設計規格...................30 3.3.1 彈簧結構........... ....31 3.3.2 微鏡面結構.......... ....33 3.3.3 梳狀結構........... ....35 3.4 後製程處理............. ....36 第四章 模擬結果和分析............. ....40 4.1元件結構模擬.................40 4.2 彈黃結構的模擬........... ....43 4.3 輸入電壓與最大出平面位移之關係... ....47 4.4 自然翹曲高度與最大出平面位移之關係. ....51 4.5 微鏡面元件設計Layout圖 ...........53 第五章 製程結果與測試考量測試考量....... ....55 5.1微鏡面製程結果................55 5.2自然翹曲角度之量測..............58 5.3 靜態量測.............. ....60 5.4 動態量測.............. ....61 第六章 結論與建議............... ....62 參考文獻 ........................65 附錄A CMOS各層的厚度參數 ............ ...67 附錄B CMOS之相關材料參數 ............. ..68 附錄C CoventorWave軟體所使用的製程檔 ........ .71

    [1] http://www.dlp.com
    [2] http://www.analog.com/
    [3] http://www.honeywell.com./sites/honeywell/
    [4] http://www.infineon.com/
    [5] http://www.sandia.gov/
    [6] K.H.-L. Chau, S.R. Lewis,Y.Zhao, R.T. Howe, S.F. Bart, and R.G. Marcheselli,” An integrated force-balanced capacitive accelerometer for low-G applications,”Tech. Digest, Int. Conf. Solid-state Sensors and Actuators. pp 593-596,1995.
    [7] M. Ruan, J. Shen, and C.B. Wheeler,” Latching microelectromagnetic relays,” Sensors and Actuators A:Physical,Vol.91,pp.352-356,2001.
    [8] D. J. Sadler, W. Zhang, C. H. Ahn, H. J. Kim, and S. H. Han,“Micromachined Semi-Encapsulated Spiral Inductors for MEMS Applications”, IEEE Trans. on Magnetics, Vol. 33, pp. 3319-3321, 1997.
    [9] R. A. Miller, Y. C. Tai, G. Xu, J. Bartha, and F. Lin.”A large-force fully-integrated MEMS magnatic actuator,”1997 International Conference On Solid-state Sensors and Actuators,pp.16-19,1997.
    [10] X. M. Zhang, F. S. Chau, C. Quan, Y. L. Lam and A. Q. Liu, “A study of the static characteristics of a torsional micromirror,” Sensors and Actuators A: Physical 90 (1-2) (2001) pp. 73-81.
    [11] Harsh K.F., Kladitis P.E., Michalicek M.A., Zhang J.L., Zhang W., Tuantranont A., Bright V. M., Lee Y.C. "Solder self-alignment for optical MEMS" Proceedings of the 1999 Lasers and Electro-Optics Society Annual Meeting - LEOS, pp. 860-861, Nov. 8-11, 1999.
    [12] Dooyoung Hah, Sophia Ting-Yu Huang, and Jui-Che Tsai,”Low-Voltage,Large-Scan Angle MEMS Anglog Micromirror Arrays With Hidden Vertical Comb-Drive Actuators.” Microelectromechanical Systems, IEEE. Vol.13,No.2, April 2004.
    [13] I.H. Park,” MEMS BASED SPACE TELESCOPE FOR EXTREME ENERGY COSMIC RAYS EXPERIMENTS.” Nucl. Phys. Proc. Suppl.134:196-201,2004.
    [14] W. Riethmuller, and W. Benecke,”Thermally excited silicon microactuators.”Electron Devices, IEEE Transactions.35,pp 758-763,1998.
    [15] M. Huja, and M.Husak,”Thermal microactuators for optical purpose,”Proceedings of Internationl Conference on Information Technology:Coding and Computing. pp 137-142,2001.
    [16] http://www-bsac.eecs.berkeley.edu/
    [17] H. Luo, G. K. Fedder, and L. R. Carley,”A 1 mG laternal CMOS-MEMS accelerometer,” The Thirteenth Annual International Conference on Micro Electro Mechanical Systems,2002,pp.502-507.
    [18] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder,”A laternal capacitive CMOS accelerometer with structural curl compensation,”The Twelfth IEEE International Conference on Micro Electro Mechanical Systems,1999,pp.606-611.
    [19] H. Xie, Y. Pan and G. Fedder,” Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror. “in Sensors & Actuators A, pp. 237-241, January 2003.
    [20] Xie, H., Pan, Y., and Fedder, G.K., "A CMOS-MEMS Mirror with Curled-Hinge Comb Drives," Journal of Microelectro mechanical Systems, Vol. 12, Issue 4, pp 450 - 457, August 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE