簡易檢索 / 詳目顯示

研究生: 楊詠媛
Yang, Yong-Yuan
論文名稱: 熱親和概念於臥式液靜壓工件主軸設計之應用
Application of Thermo-Friendly Concept in Horizontal Hydrostatic Spindle Design
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 蔡志成
Tsai, Jhy-Cherng
林士傑
Lin, Shih-Chieh
李明蒼
Lee, Ming-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 臥式液靜壓工件主軸熱致誤差熱固耦合熱親和
外文關鍵詞: horizontal hydrostatic bearing, thermal error, thermal-solid coupling, Thermo-Friendly Concept
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在液靜壓軸承系統中,熱變形所帶來之熱致誤差於所有精度誤差中占有相當程度的比例,因此本文針對一套具有高負載、高剛性、低轉速且高定位精度特性之臥式液靜壓工件主軸,探討其溫度對迴轉精度與熱變形之影響,同時引入Okuma公司所提出之熱親和概念,以降低熱變形導致之誤差問題。
    在理論方面,本文首先建立液靜壓軸承設計之基本理論,並針對定壓式液靜壓對向墊軸承之構型,探討在不同之油腔內部壓力與供給壓力比值下,油膜剛性與承載力之性能表現;此外,本文著重於液靜壓軸承系統之熱致誤差解析,藉由計算液靜壓主軸運作中所產生之熱源,透過熱固耦合模型,分析整機之穩態溫度分布以及結構變形狀況,並應用熱親和概念進行構型修改,以降低熱致誤差。
    在實驗方面,本文使用一套臥式液靜壓工件主軸,量測其於定轉速下,不同旋轉時長之迴轉精度表現,以及不同轉速下,主軸前端之軸向位移量並加以分析,並與數值模擬相互驗證;此外,建立HTM(Homogeneous Transformation Matrix)誤差矩陣,將誤差指標化,以利系統整合之誤差評估;最終期望透過機構構型之優化,以提升液靜壓軸承之精度表現。
    關鍵字:臥式液靜壓工件主軸、熱致誤差、熱固耦合、熱親和


    The error caused by thermal deformation accounts for the vast majority of accuracy error in hydrostatic bearing system. Thus, this study investigated a set of horizontal hydrostatic spindle to identify the impact of temperature rise on thermal deformation as well as rotation accuracy. Meanwhile, “Thermo-Friendly Concept” proposed by OKUMA company was employed to reduce the error brought by thermal deformation.
    The fundamental theory of hydrostatic bearing design was first built. The focus is on investigation of oil-film stiffness and load-capacity performance under various ratios of pocket pressure and supply pressure for opposed-pad hydrostatic bearing in a constant pressure system. Furthermore, this study analyzed the thermal error in hydrostatic bearing system through identifying the heat sources and calculating the heat generated during spindle rotation. By using thermal-solid coupling model, the steady-state temperature field and structural deformation could be obtained. Lastly, “Thermo-Friendly Concept” was applied to decrease thermal error through modifying the structure of the hydrostatic spindle.
    In experiment, a set of horizontal hydrostatic spindle was studied by analyzing the items below: (i) rotation accuracy of different rotation durations at fixed speeds, and (ii) axial displacement of spindle nose at different speeds. Moreover, to evaluate error at system integration state, the error matrix expressed by homogeneous transformation matrix was established to signify errors. Finally, the accuracy of hydrostatic bearing via modifying the structural configuration was improved as expected.
    Keywords: horizontal hydrostatic bearing, thermal error, thermal-solid coupling, Thermo-Friendly Concept.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 xii 符號表 xiii 第一章 導論 1 1-1 研究背景 1 1-2 文獻回顧 5 1-2-1 液靜壓軸承之研究 5 1-2-2 固定式節流液靜壓軸承之研究 6 1-2-3 主軸熱變形之研究 7 1-3 研究動機與本文目的 9 第二章 液靜壓軸承理論分析 10 2-1 液靜壓軸承理論 10 2-1-1 雷諾方程式 10 2-1-2 流阻網路法 14 2-1-3 毛細管節流液靜壓軸承Lumped parameter model 16 2-2 液靜壓軸承受熱理論 20 2-2-1 油膜熱源與溫度變化分析 21 2-2-2 馬達熱源分析 26 第三章 熱致誤差理論分析與熱親和概念 29 3-1 熱變形理論 29 3-2 主軸迴轉誤差 31 3-2-1 Homogeneous Transformation Matrix (HTM) 31 3-2-2 量測誤差分離 39 3-3 熱親和概念 43 第四章 實驗研究 45 4-1 實驗設備 45 4-1-1 臥式液靜壓工件主軸 45 4-1-2 供油系統與油溫冷卻系統 46 4-1-3 量測設備 47 4-2 實驗方法與步驟 49 4-2-1 實驗架設 49 4-2-2 實驗方法 52 4-2-3 實驗步驟 53 4-3 實驗結果 54 4-3-1 主軸迴轉精度 61 4-3-2 主軸熱變形 73 第五章 數值模擬 78 5-1 穩態溫度場分析 79 5-1-1 幾何模型 79 5-1-2 邊界條件 82 5-1-3 求解情況 99 5-2 穩態結構變形分析 103 5-2-1 幾何模型 103 5-2-2 邊界條件 103 5-2-3 求解情況 105 5-3 熱親和設計 109 5-3-1 構型修改 109 5-3-2 數值模擬結果 112 第六章 結論與未來工作 119 6-1 結論 119 6-2 未來工作 120 參考文獻 122

    [1] Girard, L. D. (1862). Application des Surfaces Glissantes. Paris.
    [2] Mori, H., and Yabe, H., (1963). A theoretical investigation on hydrostatic bearing. Bull. JSME, 6(22), 354-363.
    [3] EI-Sherbiny, M., Salam, F., and EI-Hefnawy, N. (1984). Optimum design of hydrostatic journal bearing: II. Minimum power. Tribology International, 17(3), 162-166.
    [4] Ghosh, B. (1972). An Exact Analysis of a Hydrostatic journal Bearing with a Large Circumferential Sill. Wear, 21(2), 367-375.
    [5] Ghosh, B. (1973). Load and Flow Characteristic of Capillary-compensated Hydrostatic Journal Bearing. Wear, 23(3), 377-386.
    [6] Raimondi, A. A., and Boyd, J. (1957). An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing. Lubr. Eng, 13(1), 28-37.
    [7] Malanoski, S. B., and Loeb, A. M. (1961). The effect of the method compensation on hydrostatic bearing stiffness. Transaction of the ASME, Journal of Basic Engineering, 83(2), 179-187.
    [8] Ling, T. S. (1962). On the optimization of the stiffness of externally pressurized bearings. Transaction of the ASME, Journal of Basic Engineering, 84(1), 119-122.
    [9] O’Donoghue, J. P. (1972). Parallel orifice and capillary control for hydrostatic journal bearing. Tribology, 5(2), 81-82.
    [10] Sharma, S. C., Jain, S. C., Sinhasan, R., and Shalia, R. (1995). Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings. Tribology International, 28(8), 531-539.
    [11] Sharma, S. C., Sinhasan, R., Jain, S. C., and Singh, N. (1998). Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries. Tribology Transactions, 41(3), 375-381.
    [12] Peklenik, J. (1959). Zur Fertigungsstablilitat rnessgesteuerter Werkzeugmaschinen. Industries-Auzeiger, (54).
    [13]McMurtry, D. (1987). Footprinting. Renishaw Ltd.Gloucestershire. U.K. S.M.E Tech Conf. Los Angeles.
    [14] Jedrzejewski, J., Kaczmarek, J., and Kowal, Z. (1990). Numerical optimization of thermal behavior of machine tools. CIRP Annals.
    [15]Jenq-Shyong C., and Wei-Yao H. (2003). Characterizations and models for the thermal growth of a motorized high speed spindle. International Journal of Machine Tools & Manufacture, 43(2003), 1163-1170.
    [16]Dongju, C., Marc, B., Feihu, Z., and Shen, D. (2011). Thermal error of a hydrostatic spindle. Precision Engineering, 35, 512-520.
    [17] Yingchun, L., Hao, S., Lihua, L., Wanqun, C., Yazhou, S., and Peng, Zhang. (2014). Thermal optimization of an ultra-precision machine tool by the thermal displacement decomposition and counteraction method. Int J Adv Manuf Technol (2015) 76:635-645.
    [18] Lijian, S., Mingjun, R., Haibo, H., and Yuehong, Y. (2016). Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol (2017) 88:1267-1277.
    [19] HIWIN TECHNOLOGIES CORP. TMRW_Manual(TW). 49p.
    [20] Ping, M., Jianhong, L.,Jianguo, O., and Nengjie, L. (2018). Study on multi-step error separation of spindle rotation precision. Mechanical Science and Technology for Aerospace Engineering (2018). 37(6).
    [21] Ming, K., Lihua, D., Jun, Z., and Guangcai, Z. (2012). Research on measuring and correcting method for camshaft eccentricity. China Mechanical Engineering, 2012, 23(8): 919-922.
    [22] Karwa, R. (2016). Heat and Mass Transfer. India: Springer Verlag.
    [23] Theodore, B., Adrienne, L., Frank, I., and David, D. (2011). Fundamentals of Heat and Mass Transfer. New Jersey: John Wiley & Sons, Inc.
    [24] Rowe, W. Brian. (2012). Hydrostatic, Aerostatic, and Hybrid
    Bearing Design. UK: Butterworth-Heinemann.

    QR CODE