簡易檢索 / 詳目顯示

研究生: 林諺伯
Lin, Yen-Po
論文名稱: 利用雙相機於移動平台上偵測並追蹤移動物體技術
Tracking and Detecting Moving Objects Using Stereo Camera for Moving Platform
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 雙相機角點擷取器
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究有關於移動平台上以彩色雙眼相機偵測移動物,利用SIFT角點擷取器找尋左右影像中所具有的特徵點並結合視差、控制點、色彩分割技術以及極線幾何原理求取左右影像中額外的對應點,再結合雙影像可求取深度資訊搭配行車資訊並利用搜尋視窗概念找出前後影像對應點,最後利用轉移函數與背景消去法求得移動物所在位置。
    不同於以往文獻利用至多三個轉移函數補償整張影像,本研究利用色彩分割區塊分別補償以提高轉換的準確率,同時影像中最難處理的大面積平滑區塊,本研究利用角點擷取器與視差概念成功解決特徵點不足的情況。並選擇最佳的轉移函數以完成轉換。
    本研究以不同場景驗證演算法的適用程度,成功在景深變化劇烈的室內與戶外環境中找出移動物體,並於戶外成功偵測出具有雙人移動物。


    論文摘要 I Abstract II 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 簡介 1 第二章 相機與世界座標的轉換 4 2.1 相機模型 4 2.2 極幾何原理及視差概念 6 2.2.1 極幾何原理 6 2.2.2 基本矩陣 8 2.3 視差圖概念 8 2.4 雙相機色彩分割與色彩空間技術 10 2.5 轉角擷取器 15 2.5.1 Moravec運算元 16 2.5.2 Harris角點偵測 17 2.5.3 USAN 區域 20 2.5.4 SUSAN角點偵測 21 2.5.5 CSS角點偵測 22 2.5.6 SIFT角點偵測器 27 2.6 形態學 33 2.7 數學模型 37 2.8 偵測移動物體的技術 38 2.9 追蹤移動物體的技術 41 第三章 實驗描述 43 3.1 研究策略 43 3.1.1. 雜訊問題 43 3.1.2. 對應問題 45 3.1.3. 深度對應 46 3.1.4. 搜尋視窗的大小與轉換參數的選用 46 3.1.5. 光源的選擇與比較 47 3.2 演算法 47 3.3 實驗規劃 53 3.3.1. 硬體設備 53 3.3.2. 尺度不變轉換性角點偵測器(SIFT corner detector) 54 3.3.3. 色彩分割 55 3.3.4. 左右時間對應 56 3.3.4.1. SIFT特徵點超過六個點的區塊 56 3.3.4.2. SIFT特徵點介於兩個到五個點的區塊 56 3.3.4.3. SIFT特徵點為零個或一個點的區塊 58 3.3.5. 深度計算 58 3.3.6. 前後時間對應 60 3.3.7. 轉移函數計算與選用 63 3.3.8. 背景相減法 65 第四章 實驗結果及討論 66 4.1. 戶外場景深度變化複雜的搜尋結果 66 4.2. MULTI-RANSAC與LSE求解轉移函數的差異 74 4.3. 背景深度變化極大的戶外場景之移動物體之搜尋結果 76 4.4. 場景中出現兩個相同景深變化的移動物探測 81 4.5. 場景中出現兩個不同景深變化的移動物探測 83 4.6. 室內移動物搜尋 85 第五章 結論 89 5.1. 本論文的貢獻 89 5.2. 未來展望 91

    [1] Q. Ji, "3D Face pose estimation and tracking from a monocular camera," Image and Vision Computing, vol. 20, pp. 499-511, 2002.
    [2] J. Chu, et al., "Study on method of detecting preceding vehicle based on monocular camera," in Intelligent Vehicles Symposium, IEEE, 2004, pp. 750-755.
    [3] O. Javed, et al., "A Hierarchical Approach to Robust Background Subtraction using Color and Gradient Information," Proceedings Workshop on Motion and Video Computing , pp. 22-27, 2002.
    [4] U. Franke and S. Heinrich, "Fast obstacle detection for urban traffic situations," IEEE Transaction On Intelligent Transportation Systems vol. 3, pp. 173-181, 2002.
    [5] H. Richard and Z. Andrew, "Multiple view geometry in computer vision," Cambridge University, 2000.
    [6] O. V. Yuri Boykov, Ramin Zabih, "Fast Approximate Energy Minimization via Graph Cuts," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, pp. 1222-1239, 2001.
    [7] H. Cheng, et al., "Color image segmentation: advances and prospects," Pattern Recognition, vol. 34, pp. 2259-2281, 2001.
    [8] D. Hoy, "On the use of color imaging in experimental applications," Experimental Techniques, vol. 21, pp. 17-19, 1997.
    [9] D. Comaniciu and P. Meer, "Robust analysis of feature spaces: color image segmentation," presented at the Computer Vision and Pattern Recognition, IEEE Computer Society Conference on,1997, p.750.
    [10] D. Comaniciu and P. Meer, "Mean shift analysis and applications," presented at the IEEE International Conference on Computer Vision, 1999, pp.1197-1203.
    [11] H. Moravec, "Towards automatic visual obstacle avoidance," in Proceedings of the 5th International Joint Conference on Artificial Intelligence, 1977, p.584.
    [12] C. Harris and M. Stephens, "A combined corner and edge detector," in Proceedings of the Alvey Vision Conference 1988, pp. 147-151.
    [13] S. Smith and J. Brady, "SUSAN—A new approach to low level image processing," International Journal of Computer Vision, vol. 23, pp. 45-78, 1997.
    [14] F. Mokhtarian and R. Suomela, "Robust image corner detection through curvature scale space," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 1376-1381, 1998.
    [15] S. Bae, et al., "COP: a new corner detector," Pattern Recognition Letters, vol. 23, pp. 1349-1360, 2002.
    [16] L. Kitchen and A. Rosenfeld, "Gray-level corner detection," Pattern Recognition Letters, vol. 1, pp. 95-102, 1982.
    [17] H. Wang and M. Brady, "Real-time corner detection algorithm for motion estimation," Image and Vision Computing, vol. 13, pp. 695-703, 1995.
    [18] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
    [19] K. Mikolajczyk, et al., "Shape recognition with edge-based features," in Proceedings of the British Machine Vision Conference, Norwich, UK 2003.
    [20] 范炎方, "適用於移動平台上之移動物體偵測技術," 清華大學動力機械研究所, 2009.
    [21] W. Hu, et al., "A Survey on Visual Surveillance of Object Motion and Behaviors," IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, vol. 34, pp. 334-352, 2004.
    [22] D. Gutchess, et al., "A Background Model Initialization Algorithm for Video Surveillance," Proceedings Eighth IEEE International Conference on Computer Vision, vol. 1, pp. 733-740, 2001.
    [23] O. Javed and M. Shah, "Tracking And Object Classification For Automated Surveillance," Proceedings European Conference Computer Vision, vol. 4, pp. 343-357, 2002.
    [24] S. Chien, et al., "Efficient Moving Object Segmentation Algorithm Using Background Registration Technique," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 12, p. 577, 2002.
    [25] Z. SUN, et al., "On-road vehicle detection: A review," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 694-711, 2006.
    [26] S. Colantonio, et al., "Object tracking in a stereo and infrared vision system," Infrared Physics and Technology, vol. 49, pp. 266-271, 2007.
    [27] A. Fernandez-Caballero, et al., "On motion detection through a multi-layer neural network architecture," Neural Networks, vol. 16, pp. 205-222, 2003.
    [28] W. Fu, "Robust real-time 3D trajectory tracking algorithms for visual tracking using weak perspective projection," presented at the Proceedings of the American Control Conference, 2001,pp. 4632-4637.
    [29] K. Tabb, et al., "The recognition and analysis of animate objects using neural networks and active contour models," Neurocomputing, pp. 145-172, 2002.
    [30] M. Bertozzi, et al., "Pedestrian detection by means of far-infrared stereo vision," Computer Vision and Image Understanding, vol. 106, pp. 194-204, 2007.
    [31] K. Bae, et al., "A new stereo object tracking system using disparity motion vector," Optics Communications, vol. 221, pp. 23-35, 2003.
    [32] M. Zuliani, et al., "The multiransac algorithm and its application to detect planar homographies," presented at the Image Processing, 2005. ICIP 2005. IEEE International Conference, 2005, pp153-156.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE