簡易檢索 / 詳目顯示

研究生: 周勇成
Chou, Yung-Cheng
論文名稱: STM研究Si(111)表面的初始碳化
The early stage of carbonization on Si(111) surface by STM
指導教授: 羅榮立
Lo, Rong-Li
口試委員: 蘇維彬
Su, Wei-Bin
何孟書
He, Meng-Shu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 碳化矽奈米晶體離子槍高溫氬離子濺射6x6表面重構3x3表面重構矽(111)(√3x√3) R30°表面重構凹陷結構碳誘發結構
外文關鍵詞: Silicon carbide, nano-crystal, ion gun, high temperature Ar+ sputtering, 6x6 surface reconstruction, 3x3 surface reconstruction, Si(111), (√3x√3) R30° surface reconstruction, crater, carbon induced structure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  碳化矽的奈米晶體是近期量子點研究的熱門材料之一。其中讓高溫矽基板接觸碳氫化合物氣體是常被用於製備碳化矽奈米晶體的方式,然而碳化矽成長機制的細節仍舊不明朗。這裡我們以STM研究Si(111)-7x7表面初始碳化,樣品製備方式是將高溫Si(111)-7x7樣品暴露於離子槍運作時釋出的氣體。RGA數據的分析結果顯示,離子槍去氣時釋出的氣體主要由H2、C2Hx和CO2組成。經過碳化的Si(111)-7x7樣品長出了碳化矽顆粒、單層原子深的凹陷和三種二維結構,因為碳化矽顆粒並非最先生成的產物,我們將聚焦在二維的結構上。這些二維結構透過STM影像及FFT分析得知,(√3x√3) R30°表面重構主要出現在terrace上,少部分的比例出現在凹陷區域內;這種結構最早被發表在乙炔碳化Si(111)-7x7的文獻中。另外兩種結構是3x3和6x6,大部分的6x6結構出現在台階邊緣,少部分出現在terrace凹陷區域內;3x3結構只出現在台階邊緣的凹陷區域內。我們也發現當暴露劑量加倍時, (√3x√3) R30°凹陷處長出了新生的碳化矽顆粒。


    The grains of SiC nanocrystal are one of the hot issue of quantum dot research in recent years. One of the popular methods to form SiC grains is the carbonization of silicon substrates by means of hot reaction with hydrocarbon gases. Though SiC nanocrystals can be fabricated by this method, the SiC formation mechanism is still not so clear so far. In this STM study, the gases released from ion gun were used as reactants to carbonize hot Si(111)-7x7 surfaces in order to investigate the early stage of carbonization. From the analysis of RGA data, the gases released from ion gun in its degas mode were mainly H2, C2Hx, and CO2. After the carbonization, SiC grains, mono-layer deep craters, and three two-dimensional (2D) structures were formed on the Si(111)-7x7 surface. Because the SiC grains would not be the first product in the carbonization process, we focus on the 2D structures. These structures were determined by STM images and FFT analysis. The (√3x√3) R30° reconstruction mainly appearing on terraces has a dominated proportion of reacted area. A fraction of them appear on some crater bottoms. This reconstruction is reported to be the first structure when hot Si(111)-7x7 surfaces react with C2H2. The other two structures were 3x3 and 6x6. Most 66 regions appear on the step edges, the others show up on the terraces. The 3x3 structure only appears in the bottom of craters next to the step edges. We also found that SiC grains grow in the crater bottom of (√3x√3) R30° when the dosage of gases is doubled.

    目錄 摘要 i Abstract ii 致謝 iii 1 緒論 1 1.1 前言 1 1.1.1 氬氣泡實驗的非預期結果 1 1.1.2 Si(111)-7x7表面碳化實驗 4 1.2 文獻討論 7 1.2.1 金屬汙染在Si(111)或Si(100)的表面形貌 7 1.2.2 受到碳汙染的Si(111)及Si(100)表面形貌 16 1.2.3 利用乙炔(Acetylene)在Si(111)表面上形成碳化矽 21 1.3 矽的表面重構 26 2 實驗環境與儀器原理 28 2.1 STM工作原理 28 2.2 超高真空裝置 29 2.3 離子槍 32 2.4 殘存氣體分析儀 33 2.5 機械幫浦 34 2.6 渦輪分子幫浦 35 2.7 離子幫浦 36 2.8 鈦昇華幫浦 37 3 實驗方法 38 3.1 探針製備 38 3.2 樣品製備 38 3.3 實驗內容 39 4 實驗結果討論 40 4.1 RGA頻譜分析 40 4.2 Si(111)表面初始碳化 43 4.2.1 表面碳化後的形貌 43 4.2.2 特殊平面區域原子形貌 48 4.2.3 表面結構分析 59 4.2.4 區域占比統計 67 5 總結 69 Appendix 70  (1)剖面分析計算 70  (2) SRS-RGA fragmentation pattern library 73 Reference 79

    Reference
    [1] 曾一洲,「矽(111)表面形成氬隆起塊的研究」,國立清華大學物理學系,碩士論文,中華民國107年
    [2] Abderrazak, Houyem, and E. S. B. H. Hmida. "Silicon carbide: Synthesis and properties.", Properties and applications of Silicon Carbide (2011): 361-388.
    [3] P. Masri. "Silicon carbide and silicon carbide-based structures: the physics of epitaxy.", Surface science reports 48 (2002): 1-51.
    [4] Wei Chen, et al. "Growth of monodispersed cobalt nanoparticles on 6H–SiC (0001) honeycomb template.", Applied physics letters 84.2 (2004): 281-283.
    [5] C. I. Harris, et al. "Progress towards SiC products.", Applied Surface Science 184.1-4 (2001): 393-398.
    [6] D. Nakamura, et al. "Ultrahigh-quality silicon carbide single crystals.", Nature 430.7003 (2004): 1009.
    [7] P. Gonzalez, et al. "New biomorphic SiC ceramics coated with bioactive glass for biomedical applications.", Biomaterials 24.26 (2003): 4827-4832.
    [8] C. Rockstuhl, et al. "Infrared gratings based on SiC/Si-heterostructures.", Materials Science Forum. Vol. 483. Trans Tech Publications, 2005.
    [9] X. L. Wu, et al. "Experimental evidence for the quantum confinement effect in 3 C-SiC nanocrystallites.", Physical review letters 94.2 (2005): 026102.
    [10] Kassiba, Abdelhadi, et al. "Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: Experimental and numerical simulations.", Physical Review B 66.15 (2002): 155317.
    [11] Rebecca Cheung, “Silicon carbide microelectromechanical systems for harsh environments”, World Scientific, 2006
    [12] Dai, Dejian, Xiaoxiao Guo, and Jiyang Fan. "Identification of luminescent surface defect in SiC quantum dots." Applied Physics Letters 106.5 (2015): 053115.
    [13] Yu Cao, et al. "Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport." Nano Research 11.8 (2018): 4074-4081.
    [14] Zhan Wang, Wen Yang, and Yong Wang. "Self-Trapped Exciton and Large Stokes Shift in Pristine and Carbon-Coated Silicon Carbide Quantum Dots." The Journal of Physical Chemistry C 121.36 (2017): 20031-20038.
    [15] Jian Gao, et al. "Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma." Nano Research 11.3 (2018): 1470-1481.
    [16] Gang Peng, et al. "Quantum confinement effect in β-SiC nanowires." Frontiers of Physics 13.4 (2018): 137802.
    [17] Xiaoxiao Guo, et al. "Quantum confinement effect in 6H-SiC quantum dots observed via plasmon–exciton coupling-induced defect-luminescence quenching." Applied Physics Letters 110.12 (2017): 123104.
    [18] K. Indulekha, et al. "Polycyclic silicone polymer as novel single source precursor for the facile synthesis of nanostructured SiC." Materials Chemistry and Physics 206 (2018): 64-70.
    [19] Guozhi Wen, et al. "The influence of local SiC bonding density on the photoluminescence of Si-QDs upon thermal annealing the hydrogenated amorphous Si-rich silicon carbide thin films." Journal of Non-Crystalline Solids 463 (2017): 50-55.
    [20] Jiyang Fan, et al. "3C–SiC nanocrystals as fluorescent biological labels." Small 4.8 (2008): 1058-1062.
    [21] Picture from Wekipedia : Silicon Carbide, Materialscientist created
    [22] K. Ezoe, et al. "Scanning tunnelling microscopy study of initial growth of titanium silicide on Si(111).", Applied surface science 130 (1998): 13-17.
    [23] I. Goldfarb, et al. "Scanning tunneling microscopy of titanium silicide nanoislands.", Applied surface science 238(2004):29-35.
    [24] I. Goldfarb, et al. "Equilibrium shape of titanium silicide nanocrystals on Si(111).", Physical Review B 72.7 (2005): 075430.
    [25] T. Iida, et al. "Observation of thermal growth of silicide on titanium-deposited silicon surfaces.", Surface Science 601.18 (2007): 4444-4448.

    [26] M. Toramaru, et al. "The local electronic properties and formation process of titanium silicide nanostructures on Si(001)-(2×1).", Journal of Physics: Condensed Matter 20.48 (2008): 485006.
    [27] M. D. Upward, et al. "Deposition of Fe clusters on Si surfaces.", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 18.6 (2000): 2646-2649.
    [28] S. H. Baker, et al. "The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters.", Review of Scientific Instruments 71.8 (2000): 3178-3183.
    [29] M. V. Ivanchenko, et al. "Comparative STM study of SPE growth of FeSi2 nanodots on Si(111) 7×7 and Si(111) √3×√3-R30°-B surfaces.", Surface science 600.12 (2006): 2623-2628.
    [30] O. A. Utas, et al. "STM study of the early stages of the Cr/Si(111) interface formation.", Surface science 596.1-3 (2005): 53-60.
    [31] G. Kinoda, and K. Ogawa. "Scanning tunneling microscope studies on twinned atomic structures of 19× 19 surface reconstruction in the Ni/Si(111) system.", Surface science 461 (2000): 67-77.
    [32] P. J. Bedrossian. "One-dimensional ordering on the MoSi(100) interface.", Surface science 320.3 (1994): 247-251.
    [33] P. Shukrynau, et al. "Core level photoemission and STM characterization of Ta/Si (1 1 1)-7× 7 interfaces.", Surface Science 603.3 (2009): 469-476.
    [34] O. Senftleben, H. Baumgärtner, and I. Eisele. "Cleaning of silicon surfaces for nanotechnology.", Materials Science Forum. Vol. 573. Trans Tech Publications (2008).
    [35] V. Palermo, A. Parisini, and D. Jones. "Silicon carbide nanocrystals growth on Si(100) and Si(111) from a chemisorbed methanol layer.", Surface science 600.5 (2006): 1140-1146.
    [36] M. De Crescenzi, , et al. "Si1− xCx formation by reaction of Si(111) with acetylene: growth mode, electronic structure and luminescence investigation.", Surface science 426.3 (1999): 277-289.

    [37] F. Xie, et al. "Contamination of Si surfaces in ultrahigh vacuum and formation of SiC islands." Applied surface science 181 (2001): 139-144.
    [38] T. Hopf, , J. Leveneur, and A. Markwitz. "Growth of silicon carbide surface nanocrystals on silicon under high-temperature vacuum annealing." Vacuum 86.2 (2011): 165-170.
    [39] "Acetylene on Si(111): carbon incorporation in the growth of c-SiC thin layers.", Surface science 489 (2001): 185-190.
    [40] M. De Crescenzi, et al. "Structure and morphology of c-SiC films obtained by acetylene reaction with Si(111) surface." Solid state communications 123 (2002): 27-32.
    [41] P. Castrucci, et al. "STM study of acetylene reaction with Si(111): observation of a carbon-induced Si(111) √3×√3 R30° reconstruction.", Surface science 531.1 (2003): L329-L334.
    [42] C. A. Pignedoli, et al. "Carbon induced restructuring of the Si(111) surface.", Physical Review B 69.11 (2004): 113313.
    [43] M. Scarselli, et al. "STM study of Si(111) 7×7 reconstructed surface carbonization induced by acetylene.", Surface science 559 (2004): 223-232.
    [44] R. Di Felice, t al. "Ab initio investigation of the adsorption of organic molecules at Si(111) and Si(100) surfaces.", Surface science 532 (2003): 982-987.
    [45] M. Scarselli, et al. "Effect of the silicon surface step on the acetylene reaction with the Si(111) 7×7 reconstructed surface.", Surface science 566 (2004): 155-159.
    [46] J. W. Kim, et al. "Thermal decomposition of ethylene on Si(111): Formation of the Si(111) √3×√3: carbon structure.", Surface science 601.3 (2007): 694-698.
    [47] K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama , Surface science: an introduction, Springer Science & Business Media, 2013
    [48] Jin-Feng, JiaWei-Sheng, YangQi-Kun Xue, “Scanning tunneling microscopy”, In: Handbook of microscopy for nanotechnology, Springer, Boston, MA, 2005, p.55-112

    [49] J. Bardeen. "Tunnelling from a many-particle point of view.", Physical Review Letters 6.2 (1961): 57.
    [50] Picture from Omicron official website.
    [51] R. Scrivens. "Classification of Ion Sources.", arXiv preprint arXiv:1404.0918 CERN (2014).
    [52] Picture from Spec official website and manual.
    [53] T. D. Märk, G.H. Dunn. Electron impact ionization, Springer Science & Business Media, (2013)
    [54] P. E. Miller, and M. B. Denton. "The quadrupole mass filter: basic operating concepts.", Journal of chemical education 63.7 (1986): 617.
    [55] Picture from SRS official website.
    [56] C. Bishop. “Vacuum deposition onto webs, films and foils”, William Andrew, (2011)
    [57] A. D. Chew. ”Mechanical vaccum pumps”, CAS - CERN Accelerator School and ALBA Synchrotron Light Facility : Course on Vacuum in Accelerators, Platja d'Aro, (2006), pp.43-64
    [58] Picture from Varian official website.
    [59] L. Schulz, ” Sputter-ion pumps”, CAS - CERN Accelerator School : Vacuum Technology, Snekersten, Denmark, (1999), pp.37-42.
    [60] A. Feltz, U. Memmert, and R. J. Behm. "In situ STM imaging of high temperature oxygen etching of Si(111)(7× 7) surfaces.", Chemical physics letters 192.2-3 (1992): 271-276.
    [61] J. Seiple, et al. "Elevated temperature oxidation and etching of the Si(111) 7× 7 surface observed with scanning tunneling microscopy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11.4 (1993): 1649-1653.

    QR CODE