研究生: |
黃建愷 Huang, Chien-Kai |
---|---|
論文名稱: |
高穩定及高選擇性之配體-親和蛋白質標記探針之發展 Development of a Highly Stable and Selective Affinity-Based Protein Labeling Probe |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
王聖凱
Wang, Sheng-Kai 吳淑褓 Wu, Shu-Pao |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 蛋白質標記 、螢光探針 、配體親合探針 |
外文關鍵詞: | Protein labeling, Fluorescence probe, Affinity-based probe |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢光探針在科學及醫學上是一項重要的工具。目前,螢光探針技術,已應用於許多不同蛋白質的偵測方法,例如,籠閉型螢光探針、生物正交化學探針及其他蛋白質標記技術。螢光探針有著操作方便、高靈敏度以及高專一性等優點,但如果探針保存不易,則在探針的應用上將會大打折扣。在本篇論文中,利用特戊酸提供的立體障礙,發展出具有高穩定性及選擇性的親和型螢光標記探針(Affinity-based probe),以選擇性標記目標蛋白hCA II。此探針成功應用於細胞影像中蛋白質的標記偵測,且只要修改螢光基團或是配體,即可利用不同的螢光來偵測不同的目標蛋白。我們相信此新型的蛋白質標記探針未來可應用在藥物發現、疾病診斷與基礎生物化學研究上。
Fluorescent probe is a powerful technique in biochemical research. In the past decades, many fluorescent probes have been developed for protein detection such as caged-probes, protein tag technique, and bioorthogonal chemistry reaction probes. However, there are some limitations in these techniques, such as requiring genetic modification, gradual degradation in stock solutions. In this research, we improve the stability of reactive electrophile phenyl ester with large steric hindrance pivalate group. The probe was applied to label the target protein in cell lysates and in live cells to detect intracellular protein. We believe that this novel protein labeling probe design can be applied in many other applications, such as drug discovery, medical diagnosis, and fundamental biochemical studies.
(1) Nutten, S., Proteins, Peptides and Amino Acids: Role in Infant Nutrition.
(2) Jaeger, K.-E.; Eggert, T. Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Biotechnol. 2004, 15 (4), 305-313.
(3) O'Brien, P. J.; Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 1999, 6 (4), 91-105.
(4) Tawfik, O. K.; S, D. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem 2010, 79, 471-505.
(5) Mackie, R. I.; White, B. A. Recent Advances in Rumen Microbial Ecology and Metabolism: Potential Impact on Nutrient Output. J. Dairy Sci. 1990, 73 (10), 2971-2995.
(6) Berg, J. S.; Powell, B. C.; Cheney, R. E. A millennial myosin census. Mol. Biol. Cell 2001, 12 (4), 780-794.
(7) Linsenmayer, T. F.; Gibney, E.; Gordon, M. K.; Marchant, J.; Hayashi, M.; Fitch, J. Extracellular matrices of the developing chick retina and cornea. Localization of mRNAs for collagen types II and IX by in situ hybridization. Invest. Ophthalmol. Vis. Sci. 1990, 31 (7), 1271-1276.
(8) Curtin, N. A.; Woledge, R. C. Energy changes and muscular contraction. Physiol. Rev. 1978, 58 (3), 690-761.
(9) Hirokawa, N.; Noda, Y.; Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 1998, 10 (1), 60-73.
(10) Marden, M.; Griffon, N.; Poyart, C. Oxygen delivery and autoxidation of hemoglobin. Transfu. Clin. Biol. 1995, 2 (6), 473-480.
(11) Vaidyanathan, G. Redefining Clinical Trials: The Age of Personalized Medicine. Cell 2012, 148 (6), 1079-1080.
(12) Matlashewski, G.; Lamb, P.; Pim, D.; Peacock, J.; Crawford, L.; Benchimol, S. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. Embo J. 1984, 3 (13), 3257-3262.
(13) Bourdon, J.-C.; Fernandes, K.; Murray-Zmijewski, F.; Liu, G.; Diot, A.; Xirodimas, D. P.; Saville, M. K.; Lane, D. P. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005, 19 (18), 2122-2137.
(14) Pietsch, E. C.; Sykes, S. M.; McMahon, S. B.; Murphy, M. E. The p53 family and programmed cell death. Oncogene 2008, 27 (50), 6507.
(15) Cells Protect Themselves from Damage to Their DNA: In DNA & Protein Synthesis Duke University Medical Center.
(16) Priller, C.; Bauer, T.; Mitteregger, G.; Krebs, B.; Kretzschmar, H. A.; Herms, J. Synapse Formation and Function Is Modulated by the Amyloid Precursor Protein. J. Neurosci. 2006, 26 (27), 7212-7221.
(17) Condello, C.; Lemmin, T.; Stöhr, J.; Nick, M.; Wu, Y.; Maxwell, A. M.; Watts, J. C.; Caro, C. D.; Oehler, A.; Keene, C. D. Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (4), 782-791.
(18) Congdon, E. E.; Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018, 14 (7), 399-415.
(19) Pascual, O.; Casper, K. B.; Kubera, C.; Zhang, J.; Revilla-Sanchez, R.; Sul, J.-Y.; Takano, H.; Moss, S. J.; McCarthy, K.; Haydon, P. G. Astrocytic Purinergic Signaling Coordinates Synaptic Networks. Science. 2005, 310 (5745), 113-116.
(20) Graves, P. R.; Haystead, T. A. J. Molecular Biologist's Guide to Proteomics. Mol. Biol. Rev. 2002, 66 (1), 39-63.
(21) Burrell, C. J.; Howard, C. R.; Murphy, F. A. Fenner and White's Medical Virology. Acad. Pr. 2016, 150-151.
(22) Ren, X.; Chen, L. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens. Bioelectron. 2015, 64, 182-188.
(23) Zhao, M.-X.; Zeng, E.-Z. Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res. Lett. 2015, 10 (1), 171.
(24) Fu, Z.-H.; Han, X.; Shao, Y.; Fang, J.; Zhang, Z.-H.; Wang, Y.-W.; Peng, Y. Fluorescein-Based Chromogenic and Ratiometric Fluorescence Probe for Highly Selective Detection of Cysteine and Its Application in Bioimaging. Anal. Chem. 2017, 89 (3), 1937-1944.
(25) Chen, H.-J.; Chew, C. Y.; Chang, E.-H.; Tu, Y.-W.; Wei, L.-Y.; Wu, B.-H.; Chen, C.-H.; Yang, Y.-T.; Huang, S.-C.; Chen, J.-K.; Chen, I. C.; Tan, K.-T. S-Cis Diene Conformation: A New Bathochromic Shift Strategy for Near-Infrared Fluorescence Switchable Dye and the Imaging Applications. J. Am. Chem. Soc. 2018, 140 (15), 5224-5234.
(26) Nguyen, Q. T.; Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat. Rev. Cancer 2013, 13 (9), 653.
(27) Maier, O.; Oberle, V.; Hoekstra, D. Fluorescent lipid probes: some properties and applications (a review). Chem. Phys. Lipids 2002, 116 (1-2), 3-18.
(28) Zhang, X.; Xiao, Y.; Qian, X., A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew. Chem.-Int. Edit. 2008, 47 (42), 8025-8029.
(29) Ding, Y.; Tang, Y.; Zhu, W.; Xie, Y. Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem. Soc. Rev 2015, 44 (5), 1101-1112.
(30) Lee, M. H.; Kim, J. S.; Sessler, J. L., Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem. Soc. Rev. 2015, 44 (13), 4185-4191.
(31) Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Illuminating biological processes through site-specific protein labeling. Chem. Soc. Rev. 2015, 44 (11), 3405-3417.
(32) Li, J.; Chen, L.; Du, L.; Li, M. Cage the firefly luciferin!–a strategy for developing bioluminescent probes. Chem. Soc. Rev. 2013, 42 (2), 662-676.
(33) Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka, K.; Terai, T.; Nagano, T.; Urano, Y. Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization. J. Am. Chem. Soc. 2013, 135 (1), 409-414.
(34) Cao, F.-Y.; Long, Y.; Wang, S.-B.; Li, B.; Fan, J.-X.; Zeng, X.; Zhang, X.-Z. Fluorescence light-up AIE probe for monitoring cellular alkaline phosphatase activity and detecting osteogenic differentiation. J. Mat. Chem. B 2016, 4 (26), 4534-4541.
(35) Zhuang, Y. D.; Chiang, P. Y.; Wang, C. W.; Tan, K. T. Environment‐sensitive fluorescent turn‐on probes targeting hydrophobic ligand‐binding domains for selective protein detection. Angew. Chem.-Int. Edit. 2013, 52 (31), 8124-8128.
(36) Yu, W.-T.; Wu, T.-W.; Huang, C.-L.; Chen, I. C.; Tan, K.-T. Protein sensing in living cells by molecular rotor-based fluorescence-switchable chemical probes. Chem. Sci. 2016, 7 (1), 301-307.
(37) Yoshii, T.; Mizusawa, K.; Takaoka, Y.; Hamachi, I. Intracellular Protein-Responsive Supramolecules: Protein Sensing and In-Cell Construction of Inhibitor Assay System. J. Am. Chem. Soc. 2014, 136 (47), 16635-16642.
(38) Hou, T.-C.; Wu, Y.-Y.; Chiang, P.-Y.; Tan, K.-T. Near-infrared fluorescence activation probes based on disassembly-induced emission cyanine dye. Chem. Sci. 2015, 6 (8), 4643-4649.
(39) Chen, M. Z.; Moily, N. S.; Bridgford, J. L.; Wood, R. J.; Radwan, M.; Smith, T. A.; Song, Z.; Tang, B. Z.; Tilley, L.; Xu, X.; Reid, G. E.; Pouladi, M. A.; Hong, Y.; Hatters, D. M. A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat. Commun. 2017, 8 (1), 474.
(40) Gautier, A.; Juillerat, A.; Heinis, C.; Corrêa, I. R.; Kindermann, M.; Beaufils, F.; Johnsson, K. An Engineered Protein Tag for Multiprotein Labeling in Living Cells. Chem. Biol. 2008, 15 (2), 128-136.
(41) Lai, W. Y.; Tan, K. T. Environment‐sensitive Fluorescent Turn‐on Chemical Probe for the Specific Detection of O‐Methylguanine‐DNA Methyltransferase (MGMT) in Living Cells. J. Chin. Chem. Soc. 2016, 63 (8), 688-693.
(42) Sletten, E. M.; Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem.-Int. Edit. 2009, 48 (38), 6974-6998.
(43) Lim, R. K.; Lin, Q. Bioorthogonal chemistry: recent progress and future directions. Chem. Commun. 2010, 46 (10), 1589-1600.
(44) Shieh, P.; Bertozzi, C. R. Design strategies for bioorthogonal smart probes. Org. Biomol. Chem. 2014, 12 (46), 9307-9320.
(45) Rannes, J. B.; Ioannou, A.; Willies, S. C.; Grogan, G.; Behrens, C.; Flitsch, S. L.; Turner, N. J. Glycoprotein Labeling Using Engineered Variants of Galactose Oxidase Obtained by Directed Evolution. J. Am. Chem. Soc. 2011, 133 (22), 8436-8439.
(46) Chen, Y.-X.; Triola, G.; Waldmann, H. Bioorthogonal Chemistry for Site-Specific Labeling and Surface Immobilization of Proteins. Acc. Chem. Res. 2011, 44 (9), 762-773.
(47) Tsukiji, S.; Miyagawa, M.; Takaoka, Y.; Tamura, T.; Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 2009, 5 (5), 341.
(48) Hayashi, T.; Hamachi, I., Traceless affinity labeling of endogenous proteins for functional analysis in living cells. Acc. Chem. Res. 2012, 45 (9), 1460-1469.
(49) Fujishima, S.-h.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane-Bound Proteins on Live Cells. J. Am. Chem. Soc. 2012, 134 (9), 3961-3964.
(50) 張恩豪,開發新型可轉換式近紅外光之螢光染料及蛋白激活化學探針,國立清華大學碩士論文,2018.
(51) Ekinci, D.; Karagoz, L.; Ekinci, D.; Senturk, M.; Supuran, C. T. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids. J. Enzym. Inhib. Med. Chem. 2013, 28 (2), 283-288.
(52) Fukuto, T. R.; Fahmy, M. A.; Metcalf, R. L. Alkaline hydrolysis, anticholinesterase, and insecticidal properties of some nitro-substituted phenyl carbamates. J. Agric. Food Chem. 1967, 15 (2), 273-281.