研究生: |
魏煥昇 Huan-Sheng Wei |
---|---|
論文名稱: |
準低維無序系統之弱局域效應 Effect of weak localization on quasi-low-dimensional disordered systems |
指導教授: |
吳玉書
Yu-Shu Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 弱局域效應 、電導的量子修正 、磁導 、磁阻 、準低維的 、消相時間 、消相時間的飽和 |
外文關鍵詞: | weak localization, quantum correction of conductance, magneto-conductance, magneto-resistance, quasi-low-dimensional, dephasing time, dephasing time saturation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中,我們依據弱局域化效應來探討準低維無序系統的磁導性質。我們考慮了兩個系統來進行討論。其一為準一維的圓柱線,另一個是準二維的三明治結構。
就圓柱線這個題目而言,我們發展了轉移矩陣的方法來解這個問題中所遇到的微分方程式並將我們計算所得到之磁導與用微擾方法所得到的結果比較[B. L. Altshuler, A. G. Aronov, 1981a, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)]]。一般而言,這兩種方法所得到的結果在低溫及小磁場的情況下是一致的。在高溫及大磁場的時候兩者略有偏差。我們這個工作將圓柱線的磁導計算拓展至高溫及大磁場的情況。除此之外,我們的計算方法可以用來探討不均勻的圓柱線的磁導。
三明治結構由中間為髒的金屬薄膜與兩旁近乎絕緣的區域所構成,它的材料性質使得其古典電流傳輸主要發生在金屬層。我們針對這個系統去算它的電導量子修正(QC)及磁導(MC)。結果顯示,三明治結構在特定的材料條件下其QC/MC會在某個低溫區呈現飽和行為。此外,其QC/MC在極低溫時最後會發散。在塊材的結構中,其厚度與寬度相近,我們的分析發現其QC甚至到零溫也是飽和。相類似地,假如系統符合乾淨塊材極限,也就是電子的運動在近乎絕緣的區域是彈道的 (ballistic),其MC在零溫也呈現飽合。我們在三明治結構的工作可以定性地解釋在準二維薄膜中所觀察到的失相時間飽合與極低溫的失相時間上升現象[S. M. Huang, T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007)]。這個計算可拓展至不均勻的準一維系統,也就是量子線。
In this thesis, we discuss the magneto-transport properties in quasi-low-dimensional disordered systems under weak localization theory. Two systems are considered in this work. One is the quasi-one-dimensional (Q1D) cylindrical wire, and the other is the quasi-two-dimensional (Q2D) sandwich structure.
For the cylindrical wire case, we develop a transfer-matrix method to solve the differential equation in the problem and compare our calculated magnetoconductance (MC) with the one obtained by perturbation method [B. L. Altshuler, A. G. Aronov, 1981a, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)]]. In general, the two results of different methods agree well with each other at low temperatures and at small magnetic fields. Slight deviations are found at high temperatures and at large magnetic fields when comparing these two results. Our work in this case extends the calculation of MC for cylindrical wire to high temperatures and large magnetic fields. In addition, our method could be applied to investigate the MC of non-uniform disordered cylindrical wires.
The sandwich structure consists of a dirty metallic film bounded by relatively clean but nearly insulating layers on the sides, with material parameters chosen so that the structure has classical current transport confined mainly in the metallic layer. Quantum correction of conductance (QC) and MC are calculated for this system. The result shows that QC/MC saturates over a range of low temperatures for a certain range of structural/material parameters of the sandwich structure. Moreover, QC/MC goes divergent at extreme low temperatures eventually. In the bulk-like limit, where the thickness of this system is comparable to its width, our analysis shows that QC saturates even down to zero temperature. Similarly, MC also shows saturation at zero temperature if the system satisfies the requirement of clean-bulk limit where electron’s motion in the nearly insulating layers is ballistic. Our work of sandwich structure could qualitatively explain the observed dephasing time saturation in Q2D films and the upturn of dephasing time at extreme low temperatures [S. M. Huang, T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007)]. The calculation can be extended to Q1D non-uniform disordered systems of, i.e., quantum wires.
References
Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, 1979, Phys. Rev. Lett. 42, 673
Abrahams, E., and T. V. Ramakrishnan, 1980, J. Noncrystal. Solids 35, 15
Altshuler, B. L., A. G. Aronov, A. I. Larkin, D. E. Khmelnitskii, 1981, Sov. Phys. JETP 54, 411.
Altshuler, B. L., A. G. Aronov, 1981a, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)].
Altshuler, B. L., A. G. Aronov, D. E. Khmelnitskii, A. I. Larkin, 1982, in Quantum Theory of Solids, edited by I. M. Lifshits (MIR Publisher, Moscow).
Altshuler, B. L., A. G. Aronov, D. E. Khmelnitskii, 1982a, J. Phys. C 15, 7367
Altshuler, B. L. and A. G. Aronov, 1985, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam).
Altshuler, B. L., and M. E.Gershenson, I. L. Aleiner, 1998, Physica E 3, 58.
Anderson, P. W., 1958, Phys. Rev. 109, 1492
Anderson, P. W., E. Abrahams, and T. V. Ramakrishnan, 1979, Phys. Rev. Lett. 43, 718.
Beenakker, C. W. J., and H. van Houten, 1988, Phys. Rev. B 38, 3232 .
Berezinskii, V. L., 1974, Sov. Phys. JETP 38, 620.
Bergmann, G., 1984, Phys. Rep. 107, 1 and references therein.
Chakravarty, S., and A. Schmid, 1986, Phys. Rep. 140, 193.
Feynman, R. P. and A. R. Hibbs, 1995, Quantum Menchanics and Path Integrals (McGraw-Hill, Inc., New York).
Fukuyama, H. and K. Hoshino., 1981, J. Phys. Soc. Jpn. 50, 2131
Fukuyama, H., 1985, in Electron-Electron Interactions in Disordered Systems , p. 155, edited by A.L. Efros and M. Pollak (North-Holland Physics Publishing) and references therein.
Germanenko, A. V., G. M. Minkov, and O. E. Rut, Nanotechnology 12, 614 (2001)
Golubev, D. S., and A. D. Zaikin, 1998, Phys. Rev. Lett. 81, 1074.
Gor’kov, L. P., A. I. Larkin, and D. E. Khmel’nitskii, 1979, Pis’ma ZhETF 30, 248.
Hikami, S., A. I. Larkin, and Y. Nagaoka,1980, Prog. Theor. Phys. 63, 707.
Hiramoto, T., K. Hirakawa, Y. Iye, and T. Ikoma, 1989, Appl. Phys. Lett. 54, 2103.
Huang, S. M., T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007).
Kawabata, A., 1980, Solid State Commun. 34, 431.
Khmelnitskii, D. E., 1984, Physica B 126, 235.
Kravchenko, S. V., W. E. Mason, G. E. Bowker, and J. E. Furneaux, 1995, Phys. Rev. B 51, 7038.
Larkin, A. I., and D. E. Khmelnitskii, 1982, Sov. Phys. Usp. 25, 185
Lee, H. R., H. G. Oh, C. I. Um, and T. F. George, 1989, Phys. Rev. B 39, 2822.
Lee, P. A., and T. V. Ramakrisnan, 1985, Rev. Mod. Phys. 57, 287.
Lifshitz, E. M., and L. P. Pitaevskii, 1995, Physical Kinetics (Butterworth-Heinemann Ltd).
Lin, J. J., and N. Giordano, 1987, Phys. Rev. B 35, 1071.
Lin, J. J., and J. P. Bird, J. Phys. Condens. Matter 14, R501 (2002) and references therein.
Maekawa, S., and H. Fukuyama, 1981, J. Phys. Soc. Jpn. 50, 2516.
Marquardt, F., J. von Delft, R. A. Smith, and V. Ambegaokar, 2007, Phys. Rev. B76, 195331.
Mohanty, P., E. M. Q. Jariwala, and R. A. Webb, 1997, Phys. Rev. Lett, 78, 3366.
Mohanty, P., and R. A. Webb, 2002, Phys. Rev. Lett, 88, 146601.
Mott, N. F., and W. D. Twose, 1961, Adv. Phys. 10, 107.
Mueller, R. M., R. Stasch, and G. Bergmann, Solid State Commun. 91, 255 (1994).
Pereyra, P., and E. Castillo, 2002, Phys. Rev. B 65, 205120.
Pierre, F., and N.O. Birge, 2002, Phys. Rev. Lett. 89, 206804.
Pooke, D. M., N. Paquin, M. Pepper, and A. Gundlach, 1989, J. Phys. Condens. Matter 1, 3289.
Rammer, J., 1998, Quantum Transport Theory (Perseus Books Group).
Shi, J., and X. C. Xie, Phys. Rev. B 63, 45123 (2001).
Thouless, D. J., 1974, Phys. Rep. 13, 93.
Tsu, R., and L. Esaki, 1973, Appl. Phys. Lett. 22, 562.
Wegner, F. J., 1979, Z. Phys. 35, 203.
Zawadowski, A., Jan von Delft, and D. C. Ralph, 1999, Phys. Rev. Lett. 83, 2632.