簡易檢索 / 詳目顯示

研究生: 魏煥昇
Huan-Sheng Wei
論文名稱: 準低維無序系統之弱局域效應
Effect of weak localization on quasi-low-dimensional disordered systems
指導教授: 吳玉書
Yu-Shu Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 101
中文關鍵詞: 弱局域效應電導的量子修正磁導磁阻準低維的消相時間消相時間的飽和
外文關鍵詞: weak localization, quantum correction of conductance, magneto-conductance, magneto-resistance, quasi-low-dimensional, dephasing time, dephasing time saturation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們依據弱局域化效應來探討準低維無序系統的磁導性質。我們考慮了兩個系統來進行討論。其一為準一維的圓柱線,另一個是準二維的三明治結構。
    就圓柱線這個題目而言,我們發展了轉移矩陣的方法來解這個問題中所遇到的微分方程式並將我們計算所得到之磁導與用微擾方法所得到的結果比較[B. L. Altshuler, A. G. Aronov, 1981a, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)]]。一般而言,這兩種方法所得到的結果在低溫及小磁場的情況下是一致的。在高溫及大磁場的時候兩者略有偏差。我們這個工作將圓柱線的磁導計算拓展至高溫及大磁場的情況。除此之外,我們的計算方法可以用來探討不均勻的圓柱線的磁導。
    三明治結構由中間為髒的金屬薄膜與兩旁近乎絕緣的區域所構成,它的材料性質使得其古典電流傳輸主要發生在金屬層。我們針對這個系統去算它的電導量子修正(QC)及磁導(MC)。結果顯示,三明治結構在特定的材料條件下其QC/MC會在某個低溫區呈現飽和行為。此外,其QC/MC在極低溫時最後會發散。在塊材的結構中,其厚度與寬度相近,我們的分析發現其QC甚至到零溫也是飽和。相類似地,假如系統符合乾淨塊材極限,也就是電子的運動在近乎絕緣的區域是彈道的 (ballistic),其MC在零溫也呈現飽合。我們在三明治結構的工作可以定性地解釋在準二維薄膜中所觀察到的失相時間飽合與極低溫的失相時間上升現象[S. M. Huang, T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007)]。這個計算可拓展至不均勻的準一維系統,也就是量子線。


    In this thesis, we discuss the magneto-transport properties in quasi-low-dimensional disordered systems under weak localization theory. Two systems are considered in this work. One is the quasi-one-dimensional (Q1D) cylindrical wire, and the other is the quasi-two-dimensional (Q2D) sandwich structure.
    For the cylindrical wire case, we develop a transfer-matrix method to solve the differential equation in the problem and compare our calculated magnetoconductance (MC) with the one obtained by perturbation method [B. L. Altshuler, A. G. Aronov, 1981a, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)]]. In general, the two results of different methods agree well with each other at low temperatures and at small magnetic fields. Slight deviations are found at high temperatures and at large magnetic fields when comparing these two results. Our work in this case extends the calculation of MC for cylindrical wire to high temperatures and large magnetic fields. In addition, our method could be applied to investigate the MC of non-uniform disordered cylindrical wires.
    The sandwich structure consists of a dirty metallic film bounded by relatively clean but nearly insulating layers on the sides, with material parameters chosen so that the structure has classical current transport confined mainly in the metallic layer. Quantum correction of conductance (QC) and MC are calculated for this system. The result shows that QC/MC saturates over a range of low temperatures for a certain range of structural/material parameters of the sandwich structure. Moreover, QC/MC goes divergent at extreme low temperatures eventually. In the bulk-like limit, where the thickness of this system is comparable to its width, our analysis shows that QC saturates even down to zero temperature. Similarly, MC also shows saturation at zero temperature if the system satisfies the requirement of clean-bulk limit where electron’s motion in the nearly insulating layers is ballistic. Our work of sandwich structure could qualitatively explain the observed dephasing time saturation in Q2D films and the upturn of dephasing time at extreme low temperatures [S. M. Huang, T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007)]. The calculation can be extended to Q1D non-uniform disordered systems of, i.e., quantum wires.

    Contents Abstract iv List of publications v List of figures vi 1. Introduction to weak localization 1 1.1. Scaling theory and weak localization 1 1.2. Quantum interference of coherent backscattering 4 1.3. Estimation of quantum correction 8 1.4. Experimental findings and theoretical explanations of dephasing saturation at low temperature 12 1.5. Thesis work 17 2. Transfer-matrix method for magnetoconductance of wires in longitudinal fields 19 2.1 Introduction 20 2.2 Calculational method 20 2.3 Result and discussion 25 2.4 Conclusion 27 3. Low temperature transport in a disordered sandwich structure with quasi-two-dimensional current transport characteristics 29 3.1. Introduction 30 3.2. Model structure and its connection to experimental systems 33 3.3. Backscattering Cooperon 36 3.4. Qualitative picture and formulas for the calculation of and MC 47 3.4.1. Qualitative picture of /MC and condition for saturation 47 3.4.2. Formulas for the calculation of and MC 52 3.5. Analytical results of and MC 56 3.5,1. Analytical estimate of (at B = 0) 57 3.5,2. Analytical estimate of MC at weak B 61 3.6. Film-like sandwich structure vs. isolated film (numerical results) 66 3.7. Bulk-like sandwich structure vs. isolated film (numerical results) 73 3.8. Saturation and the Cooperon equation 78 3.9. Remark, summary, and conclusion 80 4. Future works 81 4.1 Extension with the sandwich structure 81 4.2 Extension to a cylindrical wire 84 4.3 Extension to quantum-confined systems 85 Appendix 86 A. Derivation of Eqn. (2.5c) 87 B. Transfer-matrix method to solve Eqn. (2.5a) 88 C. Analytical approach to solving the transcendental equations; perturbation approximation 91 D. Derivation of diffusion current for modulated structures 96 References 99

    References

    Abrahams, E., P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, 1979, Phys. Rev. Lett. 42, 673

    Abrahams, E., and T. V. Ramakrishnan, 1980, J. Noncrystal. Solids 35, 15

    Altshuler, B. L., A. G. Aronov, A. I. Larkin, D. E. Khmelnitskii, 1981, Sov. Phys. JETP 54, 411.

    Altshuler, B. L., A. G. Aronov, 1981a, Pis’ma Zh. Eksp. Teor. Fiz. 33, 515 [JETP Lett. 33, 499 (1981)].

    Altshuler, B. L., A. G. Aronov, D. E. Khmelnitskii, A. I. Larkin, 1982, in Quantum Theory of Solids, edited by I. M. Lifshits (MIR Publisher, Moscow).

    Altshuler, B. L., A. G. Aronov, D. E. Khmelnitskii, 1982a, J. Phys. C 15, 7367

    Altshuler, B. L. and A. G. Aronov, 1985, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam).

    Altshuler, B. L., and M. E.Gershenson, I. L. Aleiner, 1998, Physica E 3, 58.

    Anderson, P. W., 1958, Phys. Rev. 109, 1492

    Anderson, P. W., E. Abrahams, and T. V. Ramakrishnan, 1979, Phys. Rev. Lett. 43, 718.

    Beenakker, C. W. J., and H. van Houten, 1988, Phys. Rev. B 38, 3232 .

    Berezinskii, V. L., 1974, Sov. Phys. JETP 38, 620.

    Bergmann, G., 1984, Phys. Rep. 107, 1 and references therein.

    Chakravarty, S., and A. Schmid, 1986, Phys. Rep. 140, 193.

    Feynman, R. P. and A. R. Hibbs, 1995, Quantum Menchanics and Path Integrals (McGraw-Hill, Inc., New York).

    Fukuyama, H. and K. Hoshino., 1981, J. Phys. Soc. Jpn. 50, 2131

    Fukuyama, H., 1985, in Electron-Electron Interactions in Disordered Systems , p. 155, edited by A.L. Efros and M. Pollak (North-Holland Physics Publishing) and references therein.

    Germanenko, A. V., G. M. Minkov, and O. E. Rut, Nanotechnology 12, 614 (2001)

    Golubev, D. S., and A. D. Zaikin, 1998, Phys. Rev. Lett. 81, 1074.

    Gor’kov, L. P., A. I. Larkin, and D. E. Khmel’nitskii, 1979, Pis’ma ZhETF 30, 248.

    Hikami, S., A. I. Larkin, and Y. Nagaoka,1980, Prog. Theor. Phys. 63, 707.

    Hiramoto, T., K. Hirakawa, Y. Iye, and T. Ikoma, 1989, Appl. Phys. Lett. 54, 2103.

    Huang, S. M., T. C. Lee, H. Akimoto, K. Kono, J.-J. Lin, Phys. Rev. Lett. 99, 046601 (2007).

    Kawabata, A., 1980, Solid State Commun. 34, 431.

    Khmelnitskii, D. E., 1984, Physica B 126, 235.

    Kravchenko, S. V., W. E. Mason, G. E. Bowker, and J. E. Furneaux, 1995, Phys. Rev. B 51, 7038.

    Larkin, A. I., and D. E. Khmelnitskii, 1982, Sov. Phys. Usp. 25, 185

    Lee, H. R., H. G. Oh, C. I. Um, and T. F. George, 1989, Phys. Rev. B 39, 2822.

    Lee, P. A., and T. V. Ramakrisnan, 1985, Rev. Mod. Phys. 57, 287.

    Lifshitz, E. M., and L. P. Pitaevskii, 1995, Physical Kinetics (Butterworth-Heinemann Ltd).

    Lin, J. J., and N. Giordano, 1987, Phys. Rev. B 35, 1071.

    Lin, J. J., and J. P. Bird, J. Phys. Condens. Matter 14, R501 (2002) and references therein.

    Maekawa, S., and H. Fukuyama, 1981, J. Phys. Soc. Jpn. 50, 2516.

    Marquardt, F., J. von Delft, R. A. Smith, and V. Ambegaokar, 2007, Phys. Rev. B76, 195331.

    Mohanty, P., E. M. Q. Jariwala, and R. A. Webb, 1997, Phys. Rev. Lett, 78, 3366.

    Mohanty, P., and R. A. Webb, 2002, Phys. Rev. Lett, 88, 146601.

    Mott, N. F., and W. D. Twose, 1961, Adv. Phys. 10, 107.

    Mueller, R. M., R. Stasch, and G. Bergmann, Solid State Commun. 91, 255 (1994).

    Pereyra, P., and E. Castillo, 2002, Phys. Rev. B 65, 205120.

    Pierre, F., and N.O. Birge, 2002, Phys. Rev. Lett. 89, 206804.

    Pooke, D. M., N. Paquin, M. Pepper, and A. Gundlach, 1989, J. Phys. Condens. Matter 1, 3289.

    Rammer, J., 1998, Quantum Transport Theory (Perseus Books Group).

    Shi, J., and X. C. Xie, Phys. Rev. B 63, 45123 (2001).

    Thouless, D. J., 1974, Phys. Rep. 13, 93.

    Tsu, R., and L. Esaki, 1973, Appl. Phys. Lett. 22, 562.

    Wegner, F. J., 1979, Z. Phys. 35, 203.

    Zawadowski, A., Jan von Delft, and D. C. Ralph, 1999, Phys. Rev. Lett. 83, 2632.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE