簡易檢索 / 詳目顯示

研究生: 徐基軒
論文名稱: 薄膜太陽電池-致冷晶片混成系統應用於電動車輛冷氣設計評估
Thin Film Solar Cell/ Thermoelectric Chip System Design for Air Conditioners in Electric Vehicles
指導教授: 洪哲文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 薄膜太陽電池超級電容器熱電致冷晶片混成電力系統車輛冷氣
外文關鍵詞: solar cell, supercapacitor, thermoelectric chip
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的為建立以薄膜非晶矽太陽電池(thin film amorphous silicon solar cell)與超級電容器等所組成之混成電力系統(hybrid power system)動態模式,供電於電動車冷氣系統(air conditioner),設計其電力能量管理策略與車室溫度之控制方法,並以所建立的系統動態模式於不同操作環境下作性能預測與評估。
    混成供電系統方面,主要研究薄膜式太陽電池與超級電容器之交流阻抗,根據不同操作環境,分析類比電路內部重要參數與變化趨勢,建構元件數學模式與物理特性,同時以Matlab/Simulink建立動態模式與實驗相互驗證,並將各電力單元模式依需求設計其控制方法,最後將以上所得到之動態模式與控制策略整合至電力系統中,設計出一套混成電力最佳分配與管理策略。
    動態負載部份則以電動車輛車室冷氣系統作為應用實例,主要理由是太陽所產生熱輻射熱量於車室中占熱量來源的絕大部分,日照強度影響車室溫度高低,同時影響混成電力太陽能板供電能力,故車室外來熱量與混成電力供電能力將會具有相對趨勢。本論文以熱電致冷晶片(thermoelectric cooling chip)由供電產生致冷動力,基於熱傳理論與交流阻抗分析,車室冷氣系統動態模式因而建立。
    將負載模式與供電模式結合,可以得到完整車室冷氣系統動態模式,本論文以各種不同極端操作狀況作動態性能分析,評估車室瞬時溫度、冷氣系統效率與混成電力各電源之供電狀況,並對實際應用於電動車冷氣系統作可行性評估。


    摘要 I 致謝 II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2 研究方法 2 1.3文獻回顧 3 1.3.1太陽電池方面 3 1.3.2超級電容器方面 4 1.3.3熱電致冷晶片方面 5 第二章 理論分析與動態模式建立 6 2.1交流阻抗分析(AC Impedance Spectroscopy) 6 2.1.1交流阻抗分析原理 6 2.1.2等效電路 8 2.2薄膜太陽電池(Thin Film Solar Cells) 11 2.2.1太陽電池簡介 11 2.2.2太陽電池原理 11 2.2.3太陽電池模式建立 13 2.2.4太陽電池操作環境與參數分析 20 2.3超級電容器(Supercapacitors) 22 2.3.1超級電容器簡介 22 2.3.2超級電容器原理 23 2.3.3超級電容器模式建立 24 2.4熱電致冷晶片(Thermoelectric Cooling Chip) 29 2.4.1熱電致冷晶片簡介 29 2.4.2熱電致冷晶片原理 29 2.4.3熱電致冷晶片模式建立 31 第三章 系統建構與實驗量測 37 3.1太陽電池電壓-電流特性實驗 37 3.2太陽電池交流阻抗分析實驗 37 3.3太陽電池最大功率輸出策略 38 3.4超級電容器充放電實驗 39 3.5超級電容器交流阻抗分析實驗 41 3.6系統架構與動力分配策略 41 3.7熱電致冷晶片車輛冷氣應用 45 3.8整體系統組合 46 第四章 結果與討論 47 4.1太陽電池交流阻抗分析與模擬結果 47 4.2超級電容器交流阻抗分析與模擬結果 57 4.3熱電致冷晶片交流阻抗分析與模擬結果 65 4.4混成電力系統應用於車輛冷氣模擬結果 68 第五章 結論與未來工作建議 75 5.1結論 75 5.2未來工作建議 76 參考文獻 77 附錄 80

    [1] http://global.mitsubishielectric.com/bu/solar/
    [2] Merten J., Asensi J. M., Voz C., Shah A. V., Platz R., Andreu J., ”Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules”, IEEE Transactions on electron devices, Vol. 45, No. 2, pp. 423-429, February 1998.
    [3] Stutenbaeumer U., Mesfin B., “Equivalent model of moncrystalline, polycrystalline and amorphous silicon solar cells”, Renewable energy, Vol. 18, pp.501-512, 1999.
    [4] Blas M. A. de, Torres J. L., Prieto E., Garcĭa A., “Selecting a suitable model for characterizing photovoltaic devices”, Renewable energy, Vol. 25, pp.371-380, 2002.
    [5] Araki K., Yamaguchi M., “Novel equivalent circuit model and statistical analysis in parameter identification”, Solar energy materials & solar cells, Vol. 75, pp. 457-466, 2003.
    [6] Thongron J., Kirtikara K., Jivacate C., “A method for determination of dynamic resistance of photovoltaic modules under illumination”, Solar energy materials & solar cells, Vol. 90, pp. 3078-3084, 2006.
    [7] Suresh M.S., “Measurement of solar cell parameters using impedance spectroscopy ”, Solar energy materials and solar cells, Vol. 43, pp. 21-28, 1996.
    [8] Thongpron J., Kirtikara K., “Voltage and frequency dependent impedances of monocrystalline ,polycrystalline and amorphous silicon solar cells”, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol 2, pp. 2116-2119 , 2006.
    [9] Vermillion R. E., “Nonlinearity in high-C capacitors”, Eur. J. Phys.,pp. 173-178, 1998.
    [10] Belhachemi F., Raёl S., Davat B., “A physical based model of power electric double-layer supercapacitors”, Industry Applications Conference, IEEE, Vol. 5, pp. 3069-3076, 2000.
    [11] Spyker R. L., Nelms R. M., “Classical equivalent circuit parameters for a double-layer capacitor”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 3, pp. 829-836 July 2000.
    [12] Buller, S., Karden, E., Kok, D., De Doncker, R.W., “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy”, Industry Applications, IEEE Transactions on Vol. 38, pp. 1622-1626, Nov.-Dec., 2002.
    [13] Kötza R., Hahna M., Gallayb R., “Temperature behavior and impedance fundamentals of supercapacitors”, Journal of Power Sources, Vol. 154, pp. 550-555, 2006.
    [14] Barsoukov E., “Impedance Spectroscopy Theory, Experiment, and Applications”, 2ed, John Wiley, 2005.
    [15] Meyer D.,”Development of a circuit-equivallent model for thermoelectric devices” Journal of undergraduate research, Vol. 9, 2007.
    [16] Pandolfo A. G., Hollenkamp A. F., “Carbon properties and their role in supercapacitors”, Journal of Power sources, Vol. 157, pp. 11-27, 2006.
    [17] http://www.maxwell.com/ultracapacitors/index.html.
    [18] Lai J.S., Levy S., Rose M.F., “High energy density double-layer capacitors for energy storage applicatios”, IEEE-AES, Vol. 7, pp. 14-19, 1992.
    [19] Kasap S.O.,“Optoelectronics and Photonics priciples and practices”, Prentice-Hall, 2001.
    [20] Smestad G.P., “Optoelectronics of Solar Cells”, Spie Press,2002.
    [21] Wurfel P., “Physics of Solar Cells”, WILEY-VCH Verlag GmbH & Co., 2005.
    [22] Cengel Y.A., “Heat Transfer:a practical approach”, Mc Graw hill, 2003.
    [23] Dai Y.J., Wang R.Z., Ni L., “Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells”, Solar energy materials & solar cells, Vol. 77, pp. 377-391, 2003.
    [24] Xu X., Dessel S.V., Messac A., “Study of the performance of thermoelectric modules for use in active building envelopes”, Building and environment, Vol. 42, pp. 1489-1502, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE