研究生: |
蔡韻芝 Yun-Chih Tsai |
---|---|
論文名稱: |
OFDM系統中使用星座擴張之低複雜度峰值對平均功率比降低技術 A Low-Complexity Constellation Extension Scheme for Peak-to-Average Power Ratio Reduction in OFDM Systems |
指導教授: |
王晉良
Chin-Liang Wang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 峰值對平均功率比 、星座擴張 、低複雜度 、OFDM系統 |
外文關鍵詞: | peak-to-average-power-ratio, constellation extension, low-complexity, OFDM |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於無線網路對於高速率資料傳輸以及可靠性資料傳輸的需求,使得正交分頻多工(orthogonal frequency-division multiplexing,簡稱OFDM)在通訊系統中成為非常具有吸引力的一種技術。OFDM系統不僅提供非常高的傳輸速率,另外還能夠有效的對抗多重路徑通道效應。然而在OFDM系統中一個主要的缺點是其輸出信號會產生相當高的峰值對平均功率比(peak-to-average power ratio,簡稱PAPR)。當具有高PAPR比值的傳輸信號經過功率放大器時會產生非線性失真。為了解決這個問題,發展出許多的峰值對平均功率比降低技術。如選擇性映射式(selective mapping,簡稱SLM)以及星座擴張(constellation extension,簡稱CE)。SLM技術可以提供很好的PAPR效能,但是這方法卻需要傳送額外訊息 (side information)。另外CE技術也可以提供好的PAPR效能但卻會增加傳輸信號的平均功率以及傳輸端的運算複雜度。
在這篇論文中,我們提出使用星座擴張之低複雜度峰值對平均功率比降低技術。我們提出的方法是結合SLM以及CE技術的概念,並且控制住增加的平均功率以及信號的錯誤率(bit-error-rate,簡稱BER)在可接受的合理範圍之內。藉由使用一些低複雜度的轉換矩陣T來產生多個候選信號,並且選出具有最低PAPR值的信號作為傳輸信號。除此之外,我們提出的方法是不需要傳送額外訊息(side information)。經由模擬和比較結果我們可看出;相比於傳統SLM技術以及星座擴張CE技術時,所提出的低複雜度技術可以達到不錯的PAPR以及BER的效能並且具有相當低的運算複雜度。
Due to the demand of high data-rate and reliable data transmission over wireless networks, orthogonal frequency-division multiplexing (OFDM) becomes one of the attractive technologies for communication systems. The OFDM systems can offer not only high data-rate services but also robustness to frequency selective fading channels. One of the major drawbacks of OFDM signals is the high peak-to-average power ratio (PAPR). When a high PAPR signal passes through a power amplifier, it may cause nonlinear distortion. Numerous techniques have been proposed to reduce the PAPR of OFDM signals, such as selected mapping (SLM) and constellation extension (CE). The SLM method can provide good performance on PAPR reduction, but it needs to transmit side information to the receiver. The CE method can also provide good PAPR reduction performance by appropriately extending the modulation constellation of input data symbols; however, it will increase the transmit power and the computation complexity at the transmitter.
In this thesis, we propose a low-complexity constellation extension scheme to reduce the PAPR of OFDM signals. The proposed method combines the concept of the conventional SLM and CE schemes, where the average increasing power and the bit-error-rate (BER) due to the extended constellations are limited to an acceptable region. By using some low-complexity conversion matrices T, the proposed scheme generates multiple candidate signals and the signal with the lowest PAPR is selected for transmission. Moreover, the proposed scheme does not need to transmit side information. As compared with the conventional SLM and CE schemes, the proposed one achieves close PAPR reduction and BER performances with much lower computational complexity.
[1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston: Artech House, 2000.
[2] IEEE, “part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std. 802.11, Aug. 1999.
[3] IEEE, “Local and Metropolitan Area Networks – part 16, Air Interface for Fixed Broadband Wireless Access System,” IEEE Std. 802.16a.
[4] ETSI, “Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” WTS 300 401 v1.3.2, Sept. 2000.
[5] ETSI, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETS 300 744 v1.3.2, Sept. 2000.
[6] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Letters, vol. 5, no. 5, pp. 185–187, May 2001
[7] R. Gross and D. Veeneman, “Clipping distortion in DMT ADSL systems,” Electron Lett., vol.29, pp. 2080-2081, Nov. 1993.
[8] D. J. G. Mestdagh, P. Spruyt, and B. Biran, “Analysis of clipping effect in DMT-based ADSL system,” in Proc. 1994 IEEE Int. Conf. Commun. (ICC ‘94), New Orleans, LA, May 1997, pp. 293-300.
[9] R. O’Neill and L. B. Lopes, “Envelop variations and spectral splatter in clipped multicarrier signals,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC ‘95), Toronto, Canada, Sept. 1995, pp. 71-76.
[10] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, pp. 131-133, May 1998.
[11] T. A. Wilkinson and A. E. Jones, “Minimization of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ‘95), Chicago, IL, July 1995, pp. 825-829.
[12] X. Li and J. A. Ritcey, “M-sequences for OFDM PAPR reduction and error correction,” Electron Lett., vol. 33, pp. 545-546, July 1997.
[13] C. Tellambura, “Use of m-sequences for OFDM peak to average power ratio reduction,” Electron Lett., vol. 33, pp. 1300-1301, July 1997.
[14] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Vehicular Technology Conference (VTC ‘95), Chicago, July 1995, pp. 825-829.
[15] K. A. S. Immink, Codes for Mass Data Storage Systems. Amsterdam. The Netherlands: Shannon Foundation Publishers, 1999.
[16] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp. 2056-2057, Oct. 1996.
[17] A. D. S. Jayalath and C. Tellambura, “The use of interleaving to reduce the peak-to-average power ratio of an OFDM signal,” in Proc. 2000 IEEE Global Telecommun. Conf. (GLOBECOM ‘00), San Francisco, CA, Nov.-Dec. 2000, pp. 82-86.
[18] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999
[19] C.-L. Wang, M.-Y. Hsu, and Y. Ouyang, “A low-complexity peak-to-average power ratio reduction technique for OFDM systems,” in Proc. 2003 Global Telecommun. Conf. (GLOBECOM 2003), San Francisco, CA, Dec. 2003, pp. 2357-2379.
[20] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, pp. 4652-4660, Dec. 2005.
[21] Nguyen Thanh Hieu, Sang-Woo Kim and Heung-Gyoon Ryu, “PAPR reduction of the low complexity phase weighting method in OFDM communication system,” IEEE Trans. Consumer electronics, vol. 51, no. 3, pp. 776-782, Aug. 2005.
[22] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999.
[23] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron Lett., vol. 33, pp. 368-369, Feb. 1997.
[24] S. D. S Jayalath and C. Tellambura, “Peak-to-average power ratio reduction of an OFDM signal using data permutation with embedded side information,” in Proc. 2001 IEEE Int. Symp. Circuits Syst. (ISCAS 2001), Sydney, Australia, vol. 4, May 2001, pp. 562-565.
[25] S. G. Kang, J. G. Kim and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadcast., vol. 45, pp. 333-338, Sep. 1999.
[26] Brian Scott Krongold and Douglas L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol.49, no.3, pp. 258-268, Sep. 2003.
[27] F. Longo , R. Ansari, Y. Yao, and F. Sellone, “Erasure pattern selection with active constellation extension for peak-to-average power ratio reduction in OFDM,” IEEE Int. Conf. Electro/Infor. Technol., May 2007, pp. 53-58.
[28] Andreas Saul, “Generalized active constellation extension for peak reduction in OFDM systems,” In Proc. IEEE Int. Conf. Commun., 2005, vol. 3, May 2005, pp. 1974-1979.
[29] M. Sharif and B. Hassbi, “A deterministic algorithm that achieves the PMEPR of clogn for multicarrier signals,” In Proc. IEEE Int. Conf. Acoustics, speech, and Signal Processing 2003, vol. 4, pp. 540-543.
[30] Y. J. Kou, W.-S. Lu, and A. Antoniou, “A new peak-to-average power ratio reduction algorithm for OFDM systems via constellation extension,” IEEE Trans. Wireless Commun., vol. 6, no.5, pp. 1823-1832, May 2007.
[31] J. Specer, Ten lectures on the probabilistic method. Philadelphia: SIAM, 1987.
[32] P. Raghavan, “Probabilistic construction of deterministic algorithm approximating packing integer program,” J. Computer and syst. Sciences, vol. 37, pp. 130-143, 1988.
[33] A. V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1998.
[34] H. G. Ryu, J. E. Lee and J. S. Park, "Dummy sequence insertion (DSI) for PAPR reduction in the OFDM communication system," IEEE Trans. Consum. Electron., vol.50, no.1, pp.89–94, Feb. 2004.
[35] Osamu Takyu, Tomoaki Ohtsuki, and Masao Nakagawa, “Criterion for reducing error rate degradation by nonlinear amplifier for multicarrier transmission,” IEEE Trans. Commun., vol.e88-b, no.7, July 2005.
[36] D.-W. Lim, C.-W. Lim, J.-S. No, and H. Chung, “A new PTS OFDM scheme with low complexity for PAPR reduction,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 77-82, Mar. 2006.