研究生: |
林剛逸 Kang-Yi Lin |
---|---|
論文名稱: |
超晶格式電子傳輸結構應用於有機發光元件之探討 A Study on Superlattice Structure Applied to Organic Light Emitting Device |
指導教授: |
蕭高智
Kao-Chih Syao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 有機發光元件 、電子傳輸層 、電子注入 、超晶格 、起始電壓 、熱退火 |
外文關鍵詞: | OLED, electron transporting layer, electron injection, superlattice, turn-on voltage, thermal annealing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討有機發光元件中置入超晶格結構對元件的影響。目前有機發光元件多遇到載子不平衡的問題,亦即電洞注入數目凌駕於電子之上。有鑑於超晶格結構(Superlattice)在無機領域中已發展成熟,因此將此結構概念置入有機發光元件之電子傳輸層(Electron Transporting Layer)之中,期望產生電子注入增強效應,藉此達成載子平衡。在實驗初期發現,此超晶格結構雖可降低電阻,降低起始電壓,然而存在發光效率不佳之現象。結構設計上,我們採用了CuPc與Alq3交替成長的設計,並嘗試2~6 nm之結構厚度(4~12 nm為週期)。
研究過程首先從單層Alq3、CuPc薄膜的表面特性開始,藉由原子力顯微鏡觀察薄膜表面平坦度,並嘗試以電漿表面處理之方式將其平坦化。之後產出一系列的有機超晶格結構多層薄膜,藉由歐傑電子能譜儀與二次離子質譜儀,檢測其交替式結構之實踐性。
我們將之應用在有機發光二極體之結構上,以基本的ITO/ CuPc(15nm)/ NPB(40nm)/ Alq3(50nm)/ MgAg結構為對照組,將其中Alq3層做一系列的結構替換,測量元件之電特性(電流-電壓圖)與發光特性(頻譜圖與亮度-電流圖),並作系統化之評量。亦運用單載子元件之方式,以及應用在紅光元件之上,判讀其確實特性。最後我們以熱退火處理,試圖改善其特性並研究熱退火對超晶格結構元件之影響。
Current OLEDs face the problem of unbalanced carrier injection caused by the poor electron mobility. Taking the tunneling concept of superlattice in inorganic semiconductors, we can apply it to the Electron Transporting Layer (ETL) for better electron injection and carrier balance. The fabricated devices, however, show an earlier turn-on voltage and lower device resistance with a huge trade-off of light efficiency. The performance degradation is discussed in the thesis.
To begin with, AFM was used to characterize the surface roughness. Surface plasma treatment was investigated to smooth out the surface for process improvement. We also fabricated a series of superlattice structures and examined the thin film thicknesses by Auger Electron Spectrometer (Auger or AES) and Secondary Ion Mass Spectrometer (SIMS.)
The superlattice structure comprises alternating 2 to 6 nm-per-layer CuPc/ Alq3 (4 to 12 nm-per-period). Basic design of “ITO/ CuPc(15nm)/ NPB(40nm)/ Alq3(50nm)/ Mg:Ag” was used for reference. The Alq3 layer was then modified with the superlattice in the experiment for comparison. The current-voltage (I-V) diagrams and luminance-current (L-I) diagram were measured and analyzed. We also applied them into single-injected devices and red emitting OLEDs. Same superlattice structures were also used on single-injected devices and red emitting OLEDs for the investigation of carrier injecting status. Finally, we proved that thermal annealing treatment improves the efficiency.
[1] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913, (1987)
[2] D. D. C. Bradley J. H. Burroughes, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature, 347, 539, (1990)
[3] B. J. Chen, X. W. Sun, T. K. S. Wong, X. Hu and A. Uddin, Appl. Phys. Lett., 87, 063505, (2005)
[4] M S Xu and J B Xu, J. Phys. D: Appl. Phys., 37, 1603-1608, (2004)
[5] F. F. So and S. R. Forrest, Phys. Rev. Lett., 66, 2649, (1991)
[6] Y. Imanishi, S. Haattori, A. Kakuta and S. Numata, Phys. Rev. Lett., 71, 13, (1993)
[7] S. R. Forrest, P. E. Burrows, Phys. Rev. Lett., 72, 14, (1994)
[8] S. R. Forrest, P. E. Burrows, E. I. Haskal and F. F. So, Phys. Rev. B, 49, 11309, (1994)
[9] H. Y. An, B. J. Chen, J. Y. Hou, J. C. Shen and S. Y. Liu, J. Phys. D: Appl. Phys., 31, 1144-1148, (1998)
[10] H. Y. An, J. Y. Hou, B. J. Chen, J. C. Shen and S. Y. Liu, Thin Solid Films, 326, 201-204, (1998)
[11] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess and J. C. Scott, J. Appl. Phys., 89, 8, 4575, (2001)
[12] A. K. Hassan and R. D. Gould, J. Phys.: Condens. Matter, 1, 6679-6684, (1989)
[13] M. M. El-Nahass, F.S. Bahabri and R.Al-Harbi, Egypt. J. Sol., 24, 1, (2001)
[14] Y. L. Lee, C. Y. Hsiao, C. H. Chang, Y. M. Yang, Sensors and Actuators B, 94, 169-175, (2003)
[15] Y. L. Lee, C. Y. Hsiao, R. H. Hsiao, Thin Solid Film, 468, 280-284, (2004)
[16] S. Barth, P. Müller, H. Riel, P. F. Seidler, W. Rieß, H. Vestweber and H. Bässler, J. Appl. Phys., 89, 7, 3711, (2001)
[17] V. V. N. Ravi Kishore, K. L. Narasimhan and N. Periasamy, Phys. Chem. Chem. Phys, 5, 1386-1391, (2003)
[18] I. H. Campbell and D. L. Smith, Appl. Phys. Lett., 74, 4, 561 (1999)
[19] C.B. Lee, A. Uddin, X. Hu, T.G. Andersson, Mat. Sci. & Eng. B, 112, 14-18, (2004)
[20] H. Li, F. Zhang, Y. Wang, D. Zheng, Mat. Sci. & Eng. B, 100, 40-46, (2003)
[21] M. Muccini, M. Brinkmann, G. Gadret, C. Taliani, N. Masciocchi, A. Sironi, Synth. Met., 122, 31-35, (2001)
[22] I. Thurzo, G. Pham, D.R.T. Zahn, Chem. Phys., 287, 43-54, (2003)
[23] W. Riess, H. Riel. T. Beierlein. W. Brütting. P. Müller. P. F. Seidler, IBM J. Res. & Dev., 45, 1, (2001)
[24] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65 (9), 3610-3616, (1989)
[25] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin and M. E. Thompson, J. Appl. Phys., 79, 10, 7991, (1996)
[26] J. M. Zhao, Y. Q. Zhan, S. T. Zhang, X. J. Wang, Y. C. Zhou, Y. Wu, Z. J. Wang, X. M. Ding, and X. Y. Hou, Appl. Phys. Lett., 84, 26, 5377, (2004)
[27] H. Y. Chen, C. F. Qiu, M. Wong and H. S. Kwok, IEEE Elec. Dev. Lett., 24, 5, 315, (2003)
[28] L. S. Hung, L. S. Liao, C. S. Lee, and S. T. Lee, J. Appl. Phys., 86, 8, 4607, (1999)
[29] S. T. Lee, Y. M. Wang, X. Y. Hou and C. W. Tang, Appl. Phys. Lett., 74, 5, 670, (1999)
[30] J. Kalinowski, J. Phys. D: Appl. Phys., 32, R179, (1999)