簡易檢索 / 詳目顯示

研究生: 傅山克
Cedric Parfait Kankeu Fotsing
論文名稱: 關於組織線上和線下的具有即時社交互動的團體活動
On Organizing Online and Offline Group Activities with Live Social Interactions
指導教授: 楊得年
Yang, De-Nian
陳宜欣
Chen, Yi-Shin
口試委員: 高宏宇
Kao, Hung-Yu
陳怡伶
Chen, Yi-Ling
高宏宇
Shen, Chih-Ya
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 146
中文關鍵詞: 算法算法群組查詢團體活動組織
外文關鍵詞: Algorithm, Algorithm, Group Query, Group Activity Organization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 群體活動籌劃是個社群網路中重要且普遍的特色。然而,現有的群體活動
    籌劃方法並不適用於涉及人與人之間的社群互動的活動。相關研究已表明參加
    者之間的社群緊密度、參加者對活動的喜好,以及活動的多樣性等皆為群體
    活動中的現場社群互動以及參加者滿意度的關鍵因素。相關研究亦顯示線下
    群體活動中的現場社群互動易導致傳染病散播,其導致對參加者健康狀況的
    負面影響。現有的線上群體活動籌劃方法並未詳加考慮上述關鍵因素。在本
    論文中,我們藉由探討具有現場社群互動的線上群體活動的大眾化情境,克
    服上述的缺點。更確切地來說,我們檢驗線上多串流直播群組籌劃的情境,
    並提出一套綜合考慮了社群緊密度、參加者的喜好,以及多樣性等因素的查
    詢,以順利籌劃線上多串流直播群組。我們制訂一套新的基礎查詢問題「社
    群感知多樣化喜好群組查詢(Social-aware Diverse and Preferred Organization Query,SDSQ)」及其推廣版本GSPQ,其同時找出一組彼此間社群關係緊密的參與者,及一組受參與者喜愛的多樣化直播頻道,以籌劃線上多串流直播群組。我們證明上述查詢問題為NP-困難,並設計有效且快速的近似演算法SDSSel與GPDSel,以在保證求解品質的情況下近似於最佳解。我們也提出兩套剪枝策略加速SDSSel的運算。再者,我們探討針對線下群體活動籌劃的協作空間群眾外包的情境。確切來說,我們提出「傳染病感知最大化任務分配問
    題(Epidemic-aware Maximum Task Assignment,EMTA)」,以組織協作工人群組,並將空間群眾外包任務分派給他們,同時考慮對傳染病散播的控制。我們證明EMTA為NP-困難,且在多項適時間內不可近似。我們又提出一套運用傳染病特性的「傳染病感知任務分配演算法(Epidemic-aware Task Assignment Algorithm,ETAA)」來完整解決EMTA問題。經由真實線上(適地性)社群網路與真實傳染病資料集上的大規模實驗,我們表明了我們提出的方法的有效性與高效率,超越了現有的比較基準方法。


    Group activity organization is a critical and popular feature of social networks. Nevertheless, current approaches for group activity organization are not suitable for activities involving live social interaction between individuals. Research has shown the participants’ social closeness, their interest in the activities, and the diversity of activities are critical factors for live social interaction, and participant satisfaction during group activities. Research has also shown that live social interaction during offline group activities can lead to epidemic spread that negatively affects participant health outcomes.

    Current online group activity organization approaches do not appropriately consider the above factors critical factors. In this dissertation, we address the aforementioned shortcomings by first studying a popular scenario of online group activities organization with live social interaction. More specifically, we examine the scenario of live multi-streaming soirees organization and propose a set of queries that concurrently consider social closeness, interest, and diversity factors to successfully organize an online multi-streaming soiree. We formulate a fundamental new query, Social-aware Diverse and Preferred Organization Query (SDSQ), and its extension, i.e., GSPQ, to jointly select a group of socially tight participants and a set of diverse and preferred live streams to organize a live multi-streaming soiree. We prove that the proposed queries are NP-hard and design efficient and effective algorithms, i.e., SDSSel and GPDSel, to approximate them with solution quality guarantee. We also propose two pruning strategies to boost SDSSel.

    Furthermore, We study the scenario of collaborative spatial crowdsourcing for offline group activities organization. Specifically, we propose Epidemic-aware Maximum Task Assignment (EMTA) to form and assign collaborative worker groups to spatial crowdsourcing tasks while taking into consideration the control of epidemic spread. We prove that EMTA is NP-hard and inapproximable in polynomial time unless P=NP. We then propose the Epidemic-aware Task Assignment Algorithm (ETAA) that leverages epidemic characteristics to fully address EMTA.

    Through extensive experiments on real social networks (OSNs and LBSNs)
    datasets and real epidemic datasets, we demonstrate the efficiency and effectiveness of our proposed approaches and strategies, as well as the superiority of our proposed approaches over the baselines.

    Abstract (Chinese) I Abstract II Acknowledgements IV Contents VI List of Figures X List of Tables XII List of Algorithms XIII 1 Introduction 1 1.0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.0.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.0.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 7 1.0.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.0.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Literature Review 13 2.1 Online Group Activity Organization Approaches . . . . . . . . . . . 13 2.1.1 Recommendation Approaches . . . . . . . . . . . . . . . . . 13 2.1.2 Group and Team Formation Approaches . . . . . . . . . . . 16 2.2 Offline Group Activity Organization Approaches . . . . . . . . . . . 17 2.2.1 POIs Recommendation . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Social, Spatial and Temporal Queries . . . . . . . . . . . . . 18 2.2.3 Spatial Crowdsourcing . . . . . . . . . . . . . . . . . . . . . 19 3 Live Multi-Streaming Soiree Organization 21 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Critical Multi-Streaming Features . . . . . . . . . . . . . . . 23 3.3 Problem Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Critical Factors for our Approach . . . . . . . . . . . . . . . 26 3.3.2 Query Presentation . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.4 Hardness Analysis . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.1 Integer Linear Programming Formulation . . . . . . . . . . . 32 3.4.2 Algorithm Design for SDSQ . . . . . . . . . . . . . . . . . . 35 3.4.3 Pruning Strategies . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.4 Generalized Social-aware Maximum Preferred and Diverse Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.5 Improvements with Parametric Maximum Flows . . . . . . . 62 3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Experimental Results of Algorithms for SDSQ . . . . . . . . 69 3.5.3 Experimental Results of Pruning Strategies . . . . . . . . . . 72 3.5.4 Experimental Results of Algorithms for GSPQ . . . . . . . . 74 3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.1 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4 Collaborative Spatial Crowdsourcing 82 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 Problem Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3.1 Critical Factors for our Approach . . . . . . . . . . . . . . . 85 4.3.2 Query Presentation . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 90 4.4.3 Derivation of Infection Stage Probabilities with Contact Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.4.4 Hardness Analysis of EMTA . . . . . . . . . . . . . . . . . . 97 4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.5.1 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6.1 Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . 110 4.6.2 Epidemic Control . . . . . . . . . . . . . . . . . . . . . . . . 111 4.6.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Conclusion 114 Bibliography 116 A User Study 131 B Multi-Group Queries Extension 135 B.0.1 Extension of Max-Flow Min-Cut for Top k Sets . . . . . . . 137 B.0.2 Algorithm Design of kSDSSel-I . . . . . . . . . . . . . . . . 140 B.0.3 Algorithms Design of kGPDSel-I . . . . . . . . . . . . . . . 142 B.0.4 Theoretical Analysis of the Multi-Group Algorithms . . . . . 143

    [1] H. Rahman, S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia, and G. Das,
    “Optimized group formation for solving collaborative tasks,” The VLDB
    Journal, 2019.
    [2] C. Shen, D. Yang, L. Huang, W. Lee, and M. Chen, “Socio-spatial group
    queries for impromptu activity planning,” IEEE Trans. Knowl. Data Eng.,
    2016.
    [3] C.-Y. Shen, D.-N. Yang, W.-C. Lee, and M.-S. Chen, “Activity organization
    for friend-making optimization in online social networks,” TKDE, 2020.
    [4] L. Chen, C. Liu, R. Zhou, J. Xu, J. X. Yu, and J. Li, “Finding effective geosocial
    group for impromptu activities with diverse demands,” in SIGKDD,
    2020.
    [5] C.-Y. Shen, D.-N. Yang, W.-C. Lee, and M.-S. Chen, “Spatial-proximity
    optimization for rapid task group deployment,” ACM TKDD, pp. 1–36, 2016.
    [6] C.-Y. Shen, D.-N. Yang, L.-H. Huang, W.-C. Lee, and M.-S. Chen, “Sociospatial
    group queries for impromptu activity planning,” IEEE TKDE, 2015.
    [7] B.-Y. Hsu, Y.-F. Lan, and C.-Y. Shen, “On automatic formation of effective
    therapy groups in social networks,” IEEE TCSS, pp. 713–726, 2018.
    [8] A. Sohail, M. A. Cheema, and D. Taniar, “Geo-social temporal top-k queries
    in location-based social networks,” in ADC, Springer, 2020.
    [9] D. Wang, X. Wang, Z. Xiang, D. Yu, S. Deng, and G. Xu, “Attentive sequential
    model based on graph neural network for next poi recommendation,”
    World Wide Web, 2021.
    [10] X. Zhao, Z. Zhang, X. Bi, and Y. Sun, “A new point-of-interest group recommendation
    method in location-based social networks,” Neural Computing
    and Applications, 2020.
    [11] G. Li, Q. Chen, B. Zheng, H. Yin, Q. V. H. Nguyen, and X. Zhou, “Groupbased
    recurrent neural networks for poi recommendation,” ACM TDS, 2020.
    [12] J. T. Cacioppo and W. Patrick, Loneliness: Human nature and the need for
    social connection. WW Norton & Company, 2008.
    [13] L. A. DeChurch and J. R. Mesmer-Magnus, “The cognitive underpinnings of
    effective teamwork: a meta-analysis.,” Journal of applied psychology, vol. 95,
    no. 1, p. 32, 2010.
    [14] R. F. Baumeister and M. R. Leary, “The need to belong: desire for interpersonal
    attachments as a fundamental human motivation.,” Psychological
    bulletin, vol. 117, no. 3, p. 497, 1995.
    [15] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
    systems: a survey of the state-of-the-art and possible extensions,”
    IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6,
    pp. 734–749, 2005.
    [16] B. P. Knijnenburg, D. A. Shamma, and J. Vermeulen, “Explaining the user
    experience of recommender systems,” User Modeling and User-Adapted Interaction,
    vol. 22, no. 4-5, pp. 441–504, 2012.
    [17] E. Pariser, The Filter Bubble: What the Internet is Hiding from You. Penguin
    Books, 2011.
    [18] J. Zhang, N. Hurley, and Z. Zhang, “Avoiding monotony: Improving the
    diversity of recommendation lists,” Information Processing & Management,
    vol. 50, no. 6, pp. 944–957, 2014.
    [19] P. Sambaturu, B. Adhikari, B. A. Prakash, S. Venkatramanan, and A. Vullikanti,
    “Designing effective and practical interventions to contain epidemics,”
    in AAMAS, 2020.
    [20] D. Tian, Y. Sun, H. Xu, and Q. Ye, “The emergence and epidemic characteristics
    of the highly mutated sars-cov-2 omicron variant,” J. Med. Virol.,
    2022.
    [21] S. Naseer, S. Khalid, K. Abbass, H. Song, and M. V. Achim, “Covid-19
    outbreak: Impact on global economy,” Front. Public Health, 2023.
    [22] S. B. Roy, L. V. S. Lakshmanan, and R. Liu, “From group recommendations
    to group formation,” in SIGMOD, 2015.
    [23] B.-Y. Hsu and C.-Y. Shen, “On extracting social-aware diversity-optimized
    groups in social networks,” in GLOBECOM, 2018.
    [24] Y. Kou, D. Shen, Q. Snell, D. Li, T. Nie, G. Yu, and S. Ma, “Efficient team
    formation in social networks based on constrained pattern graph,” in ICDE,
    2020.
    [25] J. Sun, Z. Cheng, S. Zuberi, F. P´erez, and M. Volkovs, “Hgcf: Hyperbolic
    graph convolution networks for collaborative filtering,” in WWW, 2021.
    [26] H. Zhang and J. McAuley, “Stacked mixed-order graph convolutional networks
    for collaborative filtering,” in SIAM, 2020.
    [27] Z. Huang, X. Xu, H. Zhu, and M. Zhou, “An efficient group recommendation
    model with multiattention-based neural networks,” IEEE Trans. Neural Net.
    Learning Sys., 2020.
    [28] Y. Luo, Q. Liu, and Z. Liu, “Stan: Spatio-temporal attention network for
    next location recommendation,” in WWW, 2021.
    [29] S. Halder, K. H. Lim, J. Chan, and X. Zhang, “Transformer-based multitask
    learning for queuing time aware next poi recommendation,” in PAKDD,
    Springer, 2021.
    [30] D. Zhai, A. Liu, S. Chen, Z. Li, and X. Zhang, “Seqst-resnet: a sequential
    spatial temporal resnet for task prediction in spatial crowdsourcing,” in
    DASFAA, Springer, 2019.
    [31] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive task
    assignment in spatial crowdsourcing: a data-driven approach,” in ICDE,
    IEEE, 2020.
    [32] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowdsourcing:
    a survey,” The VLDB Journal, 2020.
    [33] Q. Tao, Y. Zeng, Z. Zhou, Y. Tong, L. Chen, and K. Xu, “Multi-worker-aware
    task planning in real-time spatial crowdsourcing,” in DASFAA, Springer,
    2018.
    [34] Y. Amsterdamer and O. Goldreich, “Diverse user selection for opinion procurement.,”
    in EDBT, pp. 486–497, 2020.
    [35] P. Liu, A. Soni, E. Y. Kang, Y. Wang, and M. Parsana, “Diversity on the
    go! streaming determinantal point processes under a maximum induced
    cardinality objective,” in WWW, 2021.
    [36] Q. Wu, Y. Liu, C. Miao, B. Zhao, Y. Zhao, and L. Guan, “Pd-gan: adversarial
    learning for personalized diversity-promoting recommendation,” in
    AAAI, 2019.
    [37] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler,
    ..., and C. Viboud, “The effect of travel restrictions on the spread of the
    2019 novel coronavirus (covid-19) outbreak,” Science, vol. 368, no. 6489,
    pp. 395–400, 2020.
    [38] F. E. Andre, R. Booy, H. L. Bock, J. Clemens, S. K. Datta, T. J. John,
    ..., and T. A. Ruff, “Vaccination greatly reduces disease, disability, death
    and inequity worldwide,” Bulletin of the World Health Organization, vol. 86,
    no. 2, pp. 140–146, 2008.
    [39] R. Xie, R. Wang, S. Zhang, Z. Yang, F. Xia, and L. Lin, “Real-time relevant
    recommendation suggestion,” in WSDM, 2021.
    [40] T. Tran, D. You, and K. Lee, “Quaternion-based self-attentive long shortterm
    user preference encoding for recommendation,” in CIKM, 2020.
    [41] Y. Lei, Z.Wang, W. Li, H. Pei, and Q. Dai, “Social attentive deep q-networks
    for recommender systems,” IEEE Trans. Neural Net. Learning Sys., 2020.
    [42] T. Zhu, G. Liu, and G. Chen, “Social collaborative mutual learning for item
    recommendation,” ACM TKDD, 2020.
    [43] N. Yang, Y. Ma, L. Chen, and S. Y. Philip, “A meta-feature based unified
    framework for both cold-start and warm-start explainable recommendations,”
    World Wide Web, pp. 1–25, 2019.
    [44] X. Zhou, D. Qin, L. Chen, and Y. Zhang, “Real-time context-aware social
    media recommendation,” The VLDB Journal, 2019.
    [45] S. Liu, Z. Chen, H. Liu, and X. Hu, “User-video co-attention network for
    personalized micro-video recommendation,” in WWW, 2019.
    [46] Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua, “Mmgcn: Multimodal
    graph convolution network for personalized recommendation of microvideo,”
    in MM, 2019.
    [47] D. Cai, S. Qian, Q. Fang, and C. Xu, “Heterogeneous hierarchical feature
    aggregation network for personalized micro-video recommendation,” TMM,
    2021.
    [48] H.-C. Lai, H.-H. Shuai, D.-N. Yang, J.-L. Huang, W.-C. Lee, and P. S. Yu,
    “Social-aware vr configuration recommendation via multi-feedback coupled
    tensor factorization,” in CIKM, 2019.
    [49] L. Vinh Tran, T.-A. Nguyen Pham, Y. Tay, Y. Liu, G. Cong, and X. Li,
    “Interact and decide: Medley of sub-attention networks for effective group
    recommendation,” in SIGIR, 2019.
    [50] D. Cao, X. He, L. Miao, G. Xiao, H. Chen, and J. Xu, “Social-enhanced
    attentive group recommendation,” IEEE Trans. Knowl. Data Eng., 2019.
    [51] H.-C. Lai, J.-Y. Tsai, H.-H. Shuai, J.-L. Huang, W.-C. Lee, and D.-N. Yang,
    “Live multi-streaming and donation recommendations via coupled donationresponse
    tensor factorization,” in CIKM, 2020.
    [52] B.-Y. Hsu, C.-Y. Shen, and M.-Y. Chang, “Wmego: willingness maximization
    for ego network data extraction in online social networks,” in CIKM,
    2020.
    [53] B.-Y. Hsu, Y.-L. Chen, Y.-C. Ho, P.-Y. Chang, C.-C. Chang, B.-C. Shia,
    and C.-Y. Shen, “Diversity-optimized group extraction in social networks,”
    TCSS, 2022.
    [54] C.-Y. Shen, H.-H. Shuai, D.-N. Yang, G.-S. Lee, L.-H. Huang, W.-C. Lee,
    and M.-S. Chen, “On extracting socially tenuous groups for online social
    networks with k-triangles,” TKDE, 2020.
    [55] M. Esfandiari, D. Wei, S. Amer-Yahia, and S. Basu Roy, “Optimizing peer
    learning in online groups with affinities,” in SIGKDD, 2019.
    [56] A.-A. Stoica, J. X. Han, and A. Chaintreau, “Seeding network influence in
    biased networks and the benefits of diversity,” in WWW, 2020.
    [57] A. E. Mostafa, K. Inkpen, J. C. Tang, G. Venolia, and W. A. Hamilton,
    “Socialstreamviewer: Guiding the viewer experience of multiple streams of
    an event,” in GROUP, 2016.
    [58] W. A. Hamilton, J. C. Tang, G. Venolia, K. Inkpen, J. Zillner, and D. Huang,
    “Rivulet: Exploring participation in live events through multi-stream experiences,”
    in TVX, 2016.
    [59] W. A. Hamilton, O. Garretson, and A. Kerne, “Streaming on twitch: fostering
    participatory communities of play within live mixed media,” in CHI,
    2014.
    [60] Z. Lu, H. Xia, S. Heo, and D. Wigdor, “You watch, you give, and you engage:
    a study of live streaming practices in china,” in CHI, 2018.
    [61] A. Almaslukh, Y. Kang, and A. Magdy, “Temporal geo-social personalized
    keyword search over streaming data,” ACM TSAS, 2021.
    [62] Y. Zhao, J. Guo, X. Chen, J. Hao, X. Zhou, and K. Zheng, “Coalition-based
    task assignment in spatial crowdsourcing,” in ICDE, IEEE, 2021.
    [63] X. Li, Y. Zhao, X. Zhou, and K. Zheng, “Consensus-based group task assignment
    with social impact in spatial crowdsourcing,” DSE, 2020.
    [64] H. Rahman, S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia, and G. Das,
    “Optimized group formation for solving collaborative tasks,” The VLDB
    Journal, 2019.
    [65] J. Tang, G. Venolia, K. Inkpen, C. Parker, R. Gruen, and A. Pelton, “Crowdcasting:
    Remotely participating in live events through multiple live streams,”
    HCI, p. 98, 2017.
    [66] P. Cheng, S. Wang, J. Ma, J. Sun, and H. Xiong, “Learning to recommend
    accurate and diverse items,” in WWW, 2017.
    [67] L. Wu, Q. Liu, E. Chen, N. J. Yuan, G. Guo, and X. Xie, “Relevance meets
    coverage: A unified framework to generate diversified recommendations,”
    TIST, 2016.
    [68] Z. Abbassi, V. S. Mirrokni, and M. Thakur, “Diversity maximization under
    matroid constraints,” in SIGKDD, 2013.
    [69] M. Wilhelm, A. Ramanathan, A. Bonomo, S. Jain, E. H. Chi, and J. Gillenwater,
    “Practical diversified recommendations on youtube with determinantal
    point processes,” in CIKM, 2018.
    [70] Y. Perez, M. Schueppert, M. Lawlor, and S. Kishore, “Category-driven approach
    for local related business recommendations,” in CIKM, 2015.
    [71] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
    recommendation lists through topic diversification,” in WWW, 2005.
    [72] Y. Asahiro, E. Miyano, and K. Samizo, “Approximating maximum diameterbounded
    subgraphs,” in LATIN, 2010.
    [73] P. Crescenzi, R. Silvestri, and L. Trevisan, “On weighted vs unweighted
    versions of combinatorial optimization problems,” Information and Computation,
    2001.
    [74] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms.
    Cambridge University Press, 2011.
    [75] V. Terziyan, “Social distance metric: from coordinates to neighborhoods,”
    IJGIS, 2017.
    [76] R. Boppana and M. M. Halld´orsson, “Approximating maximum independent
    sets by excluding subgraphs,” BIT Numerical Mathematics, 1992.
    [77] S. Negi and S. Chaudhury, “Link prediction in heterogeneous social networks,”
    in CIKM, 2016.
    [78] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, “A fast parametric maximum
    flow algorithm and applications,” SIAM Journal on Computing, 1989.
    [79] A. V. Goldberg, “Finding a maximum density subgraph,” Technical Report
    CA: University of California, 1984.
    [80] X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, and Z. Qin, “Personalized key
    frame recommendation,” in SIGIR, 2017.
    [81] Y. Tian, “douyu-data,” 2018.
    [82] Yelp, “Yelp challenge dataset,” 2017.
    [83] R. Brochier, A. Guille, and J. Velcin, “Link prediction with mutual attention
    for text-attributed networks,” in WWW, 2019.
    [84] K. Chen and Z. Zhang, “Learning to classify fine-grained categories with
    privileged visual-semantic misalignment,” IEEE Trans. Big Data, 2017.
    [85] R. Zafarani and H. Liu, “Arizona state university twitter dataset,” 2009.
    [86] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
    Nature, 1998.
    [87] G. Guo, J. Zhang, and N. Yorke-Smith, “Trustsvd: Collaborative filtering
    with both the explicit and implicit influence of user trust and of item ratings,”
    in AAAI, 2015.
    [88] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al., “Item-based
    collaborative filtering recommendation algorithms.,” WWW, 2001.
    [89] J. Chen, A. Vullikanti, S. Hoops, H. Mortveit, B. Lewis, S. Venkatramanan,
    W. You, S. Eubank, M. Marathe, C. Barrett, et al., “Medical costs of keeping
    the us economy open during covid-19,” Scientific reports, 2020.
    [90] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, and J. Shaman, “Substantial
    undocumented infection facilitates the rapid dissemination of novel
    coronavirus (sars-cov-2),” Science, 2020.
    [91] D. Bzdok and R. I. Dunbar, “Social isolation and the brain in the pandemic
    era,” Nat. Hum. Behav, 2022.
    [92] J. A. Firth, J. Hellewell, P. Klepac, S. Kissler, A. J. Kucharski, and L. G.
    Spurgin, “Using a real-world network to model localized covid-19 control
    strategies,” Nature medicine, 2020.
    [93] S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, and
    J. Leskovec, “Mobility network models of covid-19 explain inequities and
    inform reopening,” Nature, 2021.
    [94] A. Ugarov, “Inclusive costs of npi measures for covid-19 pandemic: three
    approaches,” medRxiv, 2020.
    [95] Y. Liu, C. Morgenstern, J. Kelly, R. Lowe, and M. Jit, “The impact of nonpharmaceutical
    interventions on sars-cov-2 transmission across 130 countries
    and territories,” BMC medicine, 2021.
    [96] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment in spatial
    crowdsourcing,” in ICDE, IEEE, 2019.
    [97] D. Gao, Y. Tong, Y. Ji, and K. Xu, “Team-oriented task planning in spatial
    crowdsourcing,” in APWeb-WAIM, Springer, 2017.
    [98] L. Morawska and J. Cao, “Airborne transmission of sars-cov-2: The world
    should face the reality,” Environ. Int., 2020.
    [99] M. M. Almutairi, M. Yamin, G. Halikias, A. Sen, and A. Ahmed, “A framework
    for crowd management during covid-19 with artificial intelligence,”
    Sustainability, 2022.
    [100] M. Minutoli, P. Sambaturu, M. Halappanavar, A. Tumeo, A. Kalyananaraman,
    and A. Vullikanti, “Preempt: scalable epidemic interventions using
    submodular optimization on multi-gpu systems,” in SC20, IEEE, 2020.
    [101] K. Al Handawi and M. Kokkolaras, “Optimization of infectious disease prevention
    and control policies using artificial life,” IEEE TETCI, 2021.
    [102] R.Wan, X. Zhang, and R. Song, “Multi-objective model-based reinforcement
    learning for infectious disease control,” in SIGKDD, 2021.
    [103] Y.-W. Teng, Y. Shi, D.-N. Yang, W.-C. Lee, S. Y. Philip, Y.-L. Lu, and M.-
    S. Chen, “Epidemic spread optimization for disease containment with npis
    and vaccination,” in ICDE, IEEE, 2022.
    [104] N. Pathak, P. K. Deb, A. Mukherjee, and S. Misra, “Iot-to-the-rescue: A
    survey of iot solutions for covid-19-like pandemics,” IoTJ, 2021.
    [105] H. Ejaz, A. Alsrhani, A. Zafar, H. Javed, K. Junaid, A. E. Abdalla, K. O.
    Abosalif, Z. Ahmed, and S. Younas, “Covid-19 and comorbidities: Deleterious
    impact on infected patients,” J. Infect. Public, 2020.
    [106] L. Wynants, B. Van Calster, G. S. Collins, R. D. Riley, G. Heinze, E. Schuit,
    M. M. Bonten, D. L. Dahly, J. A. Damen, T. P. Debray, et al., “Prediction
    models for diagnosis and prognosis of covid-19: systematic review and critical
    appraisal,” 2020.
    [107] M. A. Quiroz-Ju´arez, A. Torres-G´omez, I. Hoyo-Ulloa, R. d. J. Le´on-Montiel,
    and A. B. U’Ren, “Identification of high-risk covid-19 patients using machine
    learning,” Plos one, 2021.
    [108] C.-M. Chen, H.-W. Jyan, S.-C. Chien, H.-H. Jen, C.-Y. Hsu, P.-C. Lee, C.-
    F. Lee, Y.-T. Yang, et al., “Containing covid-19 among 627,386 persons in
    contact with the diamond princess cruise ship passengers who disembarked
    in taiwan: big data analytics,” JMIR, 2020.
    [109] M. Shapiro and E. Delgado-Eckert, “Finding the probability of infection in
    an sir network is np-hard,” Mathematical biosciences, 2012.
    [110] P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo, “The
    independent cascade and linear threshold models,” in Diffusion in Social
    Networks, Springer, 2015.
    [111] J. Chen, S. Hoops, A. Marathe, H. Mortveit, B. Lewis, S. Venkatramanan,
    A. Haddadan, P. Bhattacharya, A. Adiga, A. Vullikanti, et al., “Prioritizing
    allocation of covid-19 vaccines based on social contacts increases vaccination
    effectiveness,” medRxiv, 2021.
    [112] P. Sambaturu, B. Adhikari, B. A. Prakash, S. Venkatramanan, and A. Vullikanti,
    “Designing effective and practical interventions to contain epidemics,”
    in AAMAS, 2020.
    [113] J. P. Azevedo, A. Hasan, D. Goldemberg, K. Geven, and S. A. Iqbal, “Simulating
    the potential impacts of covid-19 school closures on schooling and
    learning outcomes: A set of global estimates,” The World Bank Research
    Observer, 2021.
    [114] H.-H. Shuai, D.-N. Yang, S. Y. Philip, and M.-S. Chen, “A comprehensive
    study on willingness maximization for social activity planning with quality
    guarantee,” TKDE, 2015.
    [115] T. T. Marinov and R. S. Marinova, “Adaptive sir model with vaccination:
    Simultaneous identification of rates and functions illustrated with covid-19,”
    Scientific Reports, 2022.
    [116] A. Ajbar, R. T. Alqahtani, and M. Boumaza, “Dynamics of an sir-based
    covid-19 model with linear incidence rate, nonlinear removal rate, and public
    awareness,” Front. Phys., 2021.
    [117] D. Kempe, J. Kleinberg, and ´E. Tardos, “Maximizing the spread of influence
    through a social network,” in ACM SIGKDD, 2003.
    [118] C. Li and H. Tang, “Study on ventilation rates and assessment of infection
    risks of covid-19 in an outpatient building,” JOBE, 2021.
    [119] C. Xu, W. Liu, X. Luo, X. Huang, and P. V. Nielsen, “Prediction and control
    of aerosol transmission of sars-cov-2 in ventilated context: from source to
    receptor,” SCS, 2022.
    [120] A. Y. Lokhov and D. Saad, “Scalable influence estimation without sampling,”
    arXiv preprint arXiv:1912.12749, 2019.
    [121] R. Burkholz and J. Quackenbush, “Cascade size distributions: Why they
    matter and how to compute them efficiently,” in AAAI, 2021.
    [122] T. Junttila and P. Kaski, “Exact cover via satisfiability: An empirical study,”
    in CP, Springer, 2010.
    [123] C. P. Kankeu Fotsing, G.-S. Lee, Y.-W. Teng, C.-Y. Shen, Y.-S. Chen,
    and D.-N. Yang, “On spatial crowdsourcing query under pandemics,”
    tech. rep., Academia Sinica, 2023. https://dm.iis.sinica.edu.tw/
    SpatialCrowdsourcing.pdf.
    [124] S. afroj Moon and C. Scoglio, “Contact tracing evaluation for covid-19 transmission
    during the reopening phase in a rural college town,” medRxiv, 2020.
    [125] H.-H. Chen, L. Gou, X. Zhang, and C. L. Giles, “Capturing missing edges
    in social networks using vertex similarity,” in K-CAP, 2011.
    [126] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement
    in location-based social networks,” in ACM SIGKDD, 2011.
    [127] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, “Task assignment on
    multi-skill oriented spatial crowdsourcing,” TKDE, 2016.
    [128] D. Serbos, S. Qi, N. Mamoulis, E. Pitoura, and P. Tsaparas, “Fairness in
    package-to-group recommendations,” in World wide web, 2017.
    [129] W. M. Trochim and J. P. Donnelly, Research methods knowledge base, vol. 2.
    Atomic Dog Publishing Cincinnati, OH, 2001.
    [130] V. V. Vazirani and M. Yannakakis, “Suboptimal cuts: Their enumeration,
    weight and number,” in ICALP, Springer, 1992.

    QR CODE