簡易檢索 / 詳目顯示

研究生: 楊紹聖
Shao-Sheng Yang
論文名稱: 液晶顯示器驅動晶片的低功率相位壓縮設計
A Low-Power Phase Compression Design Methodology on TFT-LCD Column Driver for Dot-Inversion Method
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 61
中文關鍵詞: 低功率設計液晶顯示驅動電路電荷回收
外文關鍵詞: low-power, TFT-LCD, Column Driver, charge-recycling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於液晶面版的寄生電容和寄生電組的存在,導致液晶驅動電路中的功率大部分都消耗在面版的交流功率上(AC power)。要降低面版交流功率,可由降低改變電壓(Swing Voltage)部分著手。傳統的方法雖然可以有效降低改變電壓,但是先前的方法需要外部大電容輔助。增加外部電容將會導致I/O pad增加,此外傳統方法的電路繞線也比較複雜。本篇論文利用液晶面版的寄生電阻和寄生電容,提出一個多相位電荷平均方法來降低改變電壓,降低驅動電路的功率損耗。電路中不同的群組大小(Group Size),將會影響省電的效率和電路複雜度。較大的群組可以得到較高的省電效率,但是額外付出的代價是使用較複雜的控制電路和開關。在我們提出的方法中,可以有相當多的電路組合可以達到低功率設計的要求,我們利用程式找出最佳化的架構。並且透過步驟壓縮,將執行改變電壓步驟減少,亦即是減少操作時間。另外基於實際的考量,有限的開關距離可以降低電路繞線的複雜度,並且降低找尋最佳電路組合的時間複雜度。得到幾組最佳化的組合後,將這些組合實現成電路,並且帶入四種不同的測試數據做比對,模擬結果顯示,當群組大小為八的時候,與不做任何省電裝置比較,可以得到23-68%的省電功率。與前人的研究作比較可以得到10-18%%的省電功率,但是不用外加大電容,且電路較為簡單。


    A novel multi-phase charge-sharing technique is proposed for the dot inversion method to reduce AC power consumption of the TFT-LCD column driver without requiring any external capacitor for charge conservation. The Searching Algorithm discovers near-optimal configurations. After the exhaustive search, Phase Compression is also applied to reduce the time of charge conservation. For realistic consideration, the switching distance is limited to reduce the complexity of Searching Algorithm and decrease switch routing between column lines. Simple and easy-to-control circuitry is applied in the proposed method, and the power saving efficiency depends on number of charge phases. Increasing the number of charge phases, the saving power efficiency is also raised. Excluding power dissipation of switches, the power saving efficiency is up to 75% theoretically with infinite phases. For previous work, the maximum power saving efficient is 50% without external capacitor. The HSPICE simulation results including power dissipation of all switches show that the proposed method with seven charge phases (eight-column lines as one group) decreases the power consumption of 23%-68% and 10%-18%, respectively, compared with original circuit (without any low-power scheme) and previous low-power charge-recycling works.

    1. Introduction 6 1.1 TFT-LCD module 6 1.2 The Power Breakdown 7 1.3 Organization of the dissertation 8 2. TFT-LCD Driving Methods and Power Consumption 10 2.1 Driving Method 10 2.2 The Power Dissipation 15 3. Previous Works 17 3.1 Charge-Recycling Method 18 3.2 Charge-Recycling Method with external capacitors 19 3.3 Stepwise Data Driving Method 22 4. Proposed Method 25 4.1 Multi-phase charge-sharing 25 4.2 Optimal Configurations Searching 29 4.3 Limited Switching Distance (LSD) 35 5. Implementation 40 5.1 Architecture of CSSes 40 5.2 Power Saving Efficiency 45 5.3 Choice the CSS with phase, VSR, and switch count 48 6. Simulation Results and Discussion 51 6.1 Time of One Phase 51 6.2 Simulation Results 52 7. Conclusions and Future Works 57 8. References 59

    [1] P.-C. Yu and J.-C. Wu, "Novel low power class-B output Buffer," Proc. of IEEE International Symposium on Circuits and Systems, pp. 633-636, 1998.
    [2] S. T. Kim, B. D. Choi and O. K. Kwon, "A Novel Method of Charge-Recycling TFT-LCD Source Driver for Low-Power Consumption," Proc. of International Display Workshops, pp. 155-158, 1997.
    [3] K. Meinstein, C. Ludden, M. Hagge and S. Bily, "A Low-Power High-Voltage Column/Dot Drive System," International Society for Information Display Digest, pp. 391-394, 1997.
    [4] A. Erhart and D. McCartney, "Charge Conversation Implementation in an ultra-low power AMLCD column driver utilizing pixel inversion," International Society for Information Display Digest, pp. 23-26, 1997.
    [5] J. Kim, D. Jeong, and G. Kim, "A Multi-level Multi-phase Charge-Recycling Method for Low-Power AMLCD Column Drivers," IEEE Journal of Solid-State Circuits, pp. 74-84, Jan. 2000.
    [6] Y.-C. Sung, B.-D. Choi and O.-K. Kwon, "Low-Power TFT-LCD Source Driver Using Triple Charge Sharing Method," Proc. of 6th IEEE International Conference on VLSI and CAD, pp. 317-320, 1999.
    [7] K. Yoon, "A Hybrid-Level Multi - phase Charge - Recycler with Reduced number of External Capacitors for Low-Power LCD Column Drivers," Proc. of the Second IEEE Asia Pacific Conference on ASICs, pp. 127-130, 2000.
    [8] B.-D. Choi and O.-K. Kwon, "Stepwise Data Driving Method and Circuits for Low-Power TFT-LCDs," IEEE Transactions on Consumer Electronics, pp. 1155-1160, Nov. 2000.
    [9] S.-S. Yang, P.-L. Guo, T.-Y. Chang and J.-H. Hong, “A Multi-Phase Charge-Sharing Technique without External Capacitor for Low-Power TFT-LCD Column Drivers,” Proc. of IEEE International Symposium on Circuits and Systems, pp. V365-V368, 2003.
    [10] O.-K. Kwon, “Low-power driving methods for TFT-LCDs,” Proc. of SPIE, pp.106-120, 2003.
    [11] T. Amemiya, “Characterization of column driver for TFT-LCD,” International Society for Information Display Digest, pp. 1161-1164, 1998.
    [12] Y.-C. Sun, B.-D. Choi, and O.-K. Kwon, “A hybrid-level multi-phase charge-recycler with reduced number of external capacitors for low-power” Proc. Of the Second IEEE Asia Pacific Conference on ASICs, 2000
    [13] W. C. Athas, L. J. Svensson, J. G. Koller, N. Tzartzanis, and E. Y. Chou, “Low-power digital systems based on adiabatic-switching principles,” IEEE Transactions VLSI System, Dec. 1994, vol. 2, pp. 398–407.
    [14] Technology Modeling Associates Inc., Raphael Reference Manual Version 3.3. TMA. Sunnyvale, California, 1996.
    [15] H. Okada, “An 8.4-in. TFT-LCD Systems for a Note-size Computer Using 3-Bit Digital Data Drivers,” IDRC’ 92, pp. 475-478, SID, 1992.
    [16] T. Otose, N. Ikeda, H. Haga, H. Asda, H. Hayama, K. Shiota, T. Matsuzaki and H. Takada, “A 230ppi 2.6-in. Poly-Si TFT Reflective LCD with Partial Display Function for Mobile Applications,” IDW’01, pp.351-354, SID, Nagoya, 2001.
    [17] M. Sakamoto, S. Okutani, K. Koga, H. Hada, and S. Ohi, “Half-Column-Line Driving Method for Low-Power andLow-Cost TFT-LCDs,” SID’97, pp. 387-390, SID, Boston, 1997.
    [18] Y. C. Sung, B. D. Choi and O. K. Kwon, “A Shared Column-Line Driving Method for High Pixel Density,”SID’02, pp.913-915, SID, Boston, 2002.
    [19] M. Kodate, E. Kanzaki and K. Schleupen, “Pixel Level Data-Line Multiplexing for Low Cost/High ResolutionAMLCDs,” SID’02, pp. 1009-1011, SID, Boston, 2002.
    [20] H. Okumura and G. Itoh, “Multi-Field Driving Method for Reducing LCD Power Consumption,” SID’95, pp.249-252, SID, Orlando, 1995.
    [21] G. Itoh and H. Okumura, “Advanced Multi-Field-Driving Method for Low Power TFT-LCD,” Asia Display’95, pp.493-496, SID, Seoul, 1995.
    [22] H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai and H. Nagata, “Low Power Consumption TFT-LCD with Dynamic Memory Embedded in Pixels,” SID’01, pp.280-283, SID, San Jose, 2001.
    [23] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murate, S. Hirota and H. Sato, “A 2.15 inch QCIF ReflectiveColor TFT-LCD with Digital Memory on Glass(DMOG),” SID’01, pp. 268-271, SID, San Jose, 2001.
    [24] US patents No. 5,945,972
    [25] D. J. Jang, Y.C. Sung, O. K. Kwon and H. J. Kim, “A Pixel Structure for Reflective Color TFT-LCDs with 27-color in Still-Image,” IMID’02, pp.153-156, KIDS, Daegu, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE