研究生: |
謝禮忠 |
---|---|
論文名稱: |
碟型超音波致動器在光碟機尋軌系統之應用 Application of a disc-type ultrasonic actuator on seek of optical disk drive |
指導教授: | 歐陽敏盛 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 超音波致動器 、光碟機尋軌馬達 、壓電蜂鳴片 、2-3-3-4模態致動器 、3-4-5模態致動器 、阻抗分析儀 、ANSYS |
外文關鍵詞: | ultrasonic actuator, sled motor, piezo buzzer, 2-3-3-4 mode-shape, 3-4-5 mode-shape, impedance analyzer, ANSYS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是利用碟型超音波致動器,來取代光碟機長程尋軌系統中的尋軌馬達。經實驗證實,改裝超音波致動器的光碟機在不更動任何控制系統下,可正常且穩定的讀取資料、播放音樂與影片,成功地取代了尋軌馬達及其相關的齒輪組。
所提出的超音波致動器是使用一般市售的壓電蜂鳴片(直徑31 mm,厚度0.2 mm)作為驅動源,具有輕薄短小、價格低廉的特點。其設計方式有別於其他壓電超音波致動器,主要係以四支直徑1.7 mm的螺絲依不對稱角度60°- 90°- 90°- 120°將蜂鳴片固定於致動器的基座上,稱之為2-3-3-4模態致動器。此新型致動器較舊型3-4-5模態致動器在推動轉子(或滑塊)時,可大幅降低兩邊致動能力的差距,由原先的2.5 ~ 3倍縮小至約1.5倍,且在電壓12 時即有大約400 mm/s的線速度。透過驅動電路的補償後,可使兩邊致動力大約相等。
在新型的2-3-3-4模態致動器工作頻率選擇上,是先以HP 4194A阻抗分析儀尋找致動器靜態的共振及反共振頻率,並利用有限元素分析軟體ANSYS輔助動態模擬分析,再使用測試平台實際操作以選定頻率。三者間互相比對與驗證,確認致動器的工作頻率。
This study aims at using a disc-type ultrasonic actuator to replace the conventional sled motor used in long-seek mechanism of a CD-ROM. Experimental result demonstrates that a novel thin-disc lateral driving ultrasonic actuator can take the place of the sled motor and gear sets in optical storage tracking system without changing any control system. Data, music, and movies in a modified CD-ROM can be read out successfully and correctly with stability.
The proposed disc-type ultrasonic actuator made of a piezo buzzer (diameter is 31 mm, thickness is 0.2 mm) has thin structure and low cost as compared to those of developed ultrasonic actuators. The actuator fixed by four bolts (diameter is 1.7 mm) arranged in an asymmetric rectangle (60°- 90°- 90°- 120°) along the border of a piezo buzzer denominated as “2-3-3-4 mode-shape actuator” can rotate a rotor clockwise or counter clockwise with a line speed up to 400 mm/s under 12 peak-to-peak voltage. The ratio of driving force in both directions is significantly reduced from 2.5 ~ 3 times to about 1.5 times for the proposed actuator as compared to those of “3-4-5 mode-shape actuator”. Finally, the driving circuits compensate the speed ratio in both directions.
The resonance and the anti-resonance frequencies of the 2-3-3-4 mode-shape actuator are scanned first by HP 4194A impedance analyzer. Then, the vibration modes of the actuator are simulated via finite element software (ANSYS). Subsequently, the dynamic characteristics of this actuator are conducted experimentally by a test board constructed by myself. Through these measures, the resonance and the anti-resonance frequencies used in this study can be confirmed.
[1] 楊正甫、林光輝,光碟系統概論,全華科技圖書,台北,1991。
[2] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993.
[3] S. Ueha, Y. Tomikawa, Ultrasonic Motors - Theory and Applications, Clarendon Press, Oxford, 1993.
[4] H. V. Barth, “Ultrasonic driven motor,” IBM Technical Disclosure Bulletin, 16, 2263, 1973.
[5] 許溢适,壓電/電歪致動器,文笙書局,台北,1995。
[6] R. F. Fung, C. R. Tseng, C. M. Yao, “Dynamic simulation of a bimodal ultrasonic motor by new hybrid laplace transform/finite element method,” Journal of Sound and Vibration, 226(4) (1999) 625-644.
[7] B. Zhai, S. P. Lim, K. H. Lee, S. Dong, P. Lu, “A modified ultrasonic linear motor,” Sensors and Actuators A, 86 (2000) 154-158.
[8] M. S. Tsai, C. H. Lee, S. H. Hwang, “Dynamic modeling and analysis of a bimodal ultrasonic motor,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 50(3) (2003) 245-256.
[9] F. J. Lin, L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control,” Proceedings IEE on Electric Power Applications, 144(3) (1997) 199-206.
[10] F. J. Lin, R. Y. Duan, R. J. Wai, C. M. Hong, “LLCC resonant inverter for piezoelectric ultrasonic motor drive,” Proceedings IEE on Electric Power Applications, 146(5) (1999) 479-487.
[11] H. Kim, S. Dong, P. Laoratanakul, “Novel method for driving the ultrasonic motor,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 49(10) (2002) 1356-1361.
[12] Y. Izuno, T. Izumi, H. Yasutsune, E. Hiraki, M. Nakaoka, “Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations,” IEEE Transactions on Industry Applications, 34(1) (1998) 126-132.
[13] T. Senjyu, H. Miyazato, S. Yokoda, K. Uezato, “Speed control of ultrasonic motors using neural network,” IEEE Transactions on Power Electronics, 13(3) (1998) 381-387.
[14] S. W. Chung, K. T. Chau, C. C. Chan, “Neural-fuzzy dual-mode control of traveling-wave ultrasonic motors,” International Conference on Electric Machines and Drives, (1999) 598-600.
[15] F. J. Lin, R. J. Wai, C. M. Hong, “Identification and control of rotary traveling-wave type ultrasonic motor using neural networks,” IEEE Transactions on Control Systems Technology, 9(4) (2001) 672-680.
[16] G.. Bal, E. Bekiroglu, “Servo speed control of traveling-wave ultrasonic motor using digital signal processor,” Sensors and Actuators A, 109 (2004) 212-219.
[17] M. Bexell, S. Johansson, “Fabrication and evaluation of a piezoelectric miniature motor,” Sensors and Actuators A, 75 (1999) 8-16.
[18] S. Ueha, Y. Hashimoto, Y. Koike, “Non-contact transportation using near-field acoustic levitation,” Ultrasonics, 38 (2000) 26-32.
[19] Y. Roh, S. Lee, W. Han, “Design and fabrication of a new traveling wave-type ultrasonic linear motor,” Sensors and Actuators A, 94 (2001) 205-210.
[20] 楊明昌,“超音波馬達之設計與分析 - 軸推式”,國立清華大學工程與系統科學系碩士論文,1999。
[21] 郭榮芳,“側推式超音波馬達設計與測試”,國立清華大學工程與系統科學系碩士論文,2000。
[22] 葉俊余,“薄片型超音波致動器之設計與模擬”,國立清華大學工程與系統科學系碩士論文,2000。
[23] 黃昱先,“利用ANSYS輔助碟型超音波致動器之動態特性量測”,國立清華大學工程與系統科學系碩士論文,2003。
[24] 陳昭亨,“盤型超音波致動器動態電性分析”,國立清華大學工程與系統科學系碩士論文,2002。
[25] 陳明泰,“以單晶片為控制基礎的薄盤式壓電致動平台研製”,國立清華大學工程與系統科學系碩士論文,2000。
[26] 林志和,“超音波平台之控制系統設計與測試”,國立清華大學工程與系統科學系碩士論文,2002。
[27] 陳英豪,“超音波滑動平台之設計與研製”,國立清華大學工程與系統科學系碩士論文,2002。
[28] 李政漢,“側推式超音波馬達性能量測與應用設計”,國立清華大學工程與系統科學系碩士論文,2001。
[29] 蔡汶釧,“以放電波形鑑別為控制基礎之微放電加工系統的設計與研製”,國立清華大學工程與系統科學系碩士論文,2002。
[30] F. L. Wen, C. Y. Yen, M. Ouyang, “Thin-disk piezoceramic ultrasonic motor. Part I:design and performance evalution,” Ultrasonics, 41 (2003) 437-450.
[31] C. Y. Yen, F. L. Wen, M. Ouyang, “Thin-disk piezoceramic ultrasonic motor. Part II:system construction and control,” Ultrasonics, 41 (2003) 451-463.
[32] 吳朗,電子陶瓷-壓電,全欣科技,台北,1994。
[33] 鄭振東,超音波工程,全華科技圖書,台北,1999。
[34] 鄭世裕,「壓電陶瓷」,陶瓷技術手冊,汪建民主編,粉末冶金協會,台北,1994。
[35] 許溢适,壓電陶瓷新技術,文笙書局,台北,1996。
[36] J. Zelenka, Piezoelectric resonators and their applications, Elsevier, Amsterdam, 1986.
[37] 劉世賢,“嵌入式DSP系統於光碟機尋軌/主軸伺服系統之應用”,國立清華大學動力機械工程學系碩士論文,2003。
[38] 黃金壽,“光碟機之尋軌伺服控制參數之最佳化研究”,國立清華大學動力機械工程學系碩士論文,2000。
[39] 劉昶輝,“光碟機尋軌伺服之時間最佳化路徑設計與實作”,國立清華大學動力機械工程學系碩士論文,2001。
[40] 葉春敏,“CD-ROM/DVD型光碟機專題研究報告”,工業技術研究院光電工業研究所,新竹,1997。
[41] 黃得瑞 編,“電腦週邊系統導論”課程講義,國立清華大學動力機械工程學系,2002。
[42] Acoustic Component Div., OBO pro.2 Inc., Taipei, 2002.
[43] 王勗成、邵敏,有限元素法基本原理與數值方法,亞東書局,台北,1992。
[44] 王新榮、陳時錦、劉亞忠,有限元素法及其運用,中央圖書,台北,2002。
[45] 康淵、陳信吉,ANSYS入門,全華科技圖書,台北,2002。
[46] 陳精一,ANSYS 6.0 電腦輔助工程分析,全華科技圖書,台北,2002。
[47] 歐陽敏盛、賴明宏、黃晉興、牟善琦、黃昱先、謝禮忠,“新型超音波致動光碟機尋軌機構的設計與控制(I) ”,中華民國自動控制研討會,彰化,2004。