簡易檢索 / 詳目顯示

研究生: 李志峰
Chih-Feng Li
論文名稱: 鎖相迴路之最大累積抖動量測
The Worst-Case Accumulated Jitter Measurement for Phase-Locked Loops
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 47
中文關鍵詞: 鎖相迴路抖動量時間電壓轉換器峰值電壓檢測器谷值電壓檢測器快閃式類比轉數位轉換器
外文關鍵詞: Phase-Locked Loops, Jitter, Time-to-Voltage Converter, Peak Detector, Valley Detector, Flash Analog-to-Digital converter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎖相迴路 (Phase-Locked Loops)在系統整合晶片(System on Chip)已經被廣泛的用來產生乾淨而且穩定的時脈,由於現在系統速度越來越快,以及系統也有著雜訊干擾,所以使得系統需要更嚴謹的時間規格。藉由量測鎖相迴路所產生出來時脈的抖動量(Jitter)便能判別雜訊影響的程度,進而改善鎖相迴路的效能,而不致使得整個系統整合晶片的良率受到影響。傳統的量測方式是使用外部的 ATE (Automation Testing Equipment) ,此量測方式有著量測成本昂貴且不能準確的直接量測深藏在晶片中的鎖相迴路的問題,使用內建自我量測電路 BIST(Built-in-Self-Test)以達到解決這些問題且能正確量測到鎖相迴路的抖動量。本論文提出一個量測方式及電路來直接量測到鎖相迴路的最大累積抖動,包含正和負的最大累積抖動。量測電路使用高速計數器(High-Speed Counter)對鎖相迴路輸出累積N個週期時間量,經由兩級時間對電壓轉換(Two-Stage Time-to-Voltage Conversion)對正負抖動量作個區分,峰值電壓檢測(Peak Detector)、谷值電壓檢測(Valley Detector),以反向器為基礎的快閃類比轉數位輸出(Inverter-based Flash Analog-to-Digital Conversion)所組成。因此便能在量測過程就直接量測到最大的抖動量而不需事後決定抖動的正負之分(Without Post-Processing)。量測頻率範圍為 700MHz-1.4GHz,累積8個週期進行量測,量測得到的解析度和線性失真分別是44ps及1.25%。量測在1GHz之下再經過校正(Calibration)得到的最大誤差為一個最小計數單位(LSB),而1GHZ以上的頻率量測得到最大誤差在1LSB--2LSB之間。


    This paper presents a Time-to-Digital Converter (TDC) circuit to measure the worst-case accumulated jitters over N periods of the PLL output signal. The worst-case jitters that include the most positive jitter and the most negative jitter can be calculated through the proposed approach. For a case study, under the proposed TDC circuit, the frequency range of the measured signal, the accumulated periods, and resolution are 700MHz~1.4GHz, 8 periods, and 44ps respectively, with the 4-bit flash ADC. The HSPICE simulation result shows that the maximum measurement error is 1-LSB after calibration using a 0.25um CMOS process.

    Contents Abstract Contents List of Figures List of Tables Chapter1. Introduction………………………………..………………….1 1.1 Background…………………………………………………..………1 1.2 Jitter Analysis………………………………………………………...3 1.3 Motivation……………………………………………………………4 1.4 Organization………………………………………………………….7 Chapter2. Previous Works……………………………………………..…8 2.1 Timing-test Techniques……….………………………………………9 2.2 Period Jitter Measurement……………………………………..……10 2.3 Time to Digital Converter Techniques………………………………11 2.3.1 Interpolation based TDC………………………………..……..11 2.3.2 Vernier Delay Line….…….………………………………..….14 2.3.3 Dual Slope Method………………............................................16 2.4 Summary……………………………………………………………18 Chapter3 Proposed Method and Proposed Measurement Circuits….…..19 3.1 Accumulated Signal Generator…………………………..…………22 3.2 Time-to-Voltage Converter (TVC)………………………………….25 3.3 Valley Detector and Peak Detector…………………………………28 3.4 Leakage Cancellation Circuits……………………………...……….29 3.5 A/D Converter……………………………………………….…..31 Chapter4 Calibration and Simulation Results……………………..……34 Chapter5. Conclusions and Future Works…………………………........43 Bibliography.............................................................................................44

    [1] A mixed-signal framework and standard for high-frequency timing measurements
    Soma, M.; AUTOTESTCON Proceeding, 2001. IEEE Systems Readiness Technology Conference,20-23 Aug. pp. 504 – 513, 2001.

    [2] Frank Herzel & Behzad Razavi, "A Study of Oscillator Jitter Due to Supply and Substrate Noise", IEEE Transactions on Circuits and Systems, Analog and Digital Signal Proceeding, Vol. 46, No. 1, 1999

    [3] Extraction of peak-to-peak and RMS sinusoidal jitter using an analytic signal method Yamaguchi, T.J.; Soma, M.; Ishida, M.; Watanabe, T.; Ohmi, T.; VLSI Test Symposium, 2000. Proceedings 18th IEEE, 30, pp. 395 – 402, April-4 May 2000

    [4] T. Yamaguchi, M. Soma, L.Marrlarsie, M.Ishida, H. Musha, "Timing Jitter Measurement of 10Gbps Bit Clock Signals Using Frequency Division", Proc. IEEE VLSI Test Symposium, pp. 207-212, 2002

    [5] H. C. Lin, K. Taylor, A. Chong, E. Chan, M. Soma, H. Haggag, J. Huard, J. Braatz , “CMOS Built-In Test Architecture for High-Speed Jitter Measurement”, Proc.of ITC, pp. 67-76, 2003.

    [6] T. Yamaguchi and M. Sima, “A Method for Measuring the Cycle-to-Cycle period Jitter of High-Frequency Clock Signals”, Proceeding 19th IEEE VTS, pp. 102-110, 2001.

    [7] E. Raisanen - Ruosalainen, T. Rahkonen, and J. Kostamovaara, “A Low Power CMOS Time-to-Digital Converter”, Proceedings CICC, pp. 605-990, 1995.

    [8] T. Rahkonen, and J. Kostamovaara, “The use of stabilized CMOS delay lines in the digitization of short time intervals’’, Proceeding IEEE JSSC, vol. 28, pp. 887-894, 1993.

    [9] P. Dudek, Student Member, IEEE, S. Szczepanski, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line”, Proceedings IEEE JSSC, Vol.35, pp. 240 –247, 2000.

    [10] A. H. Chan and G. W. Roberts, “A synthesizable, fast and high-resolution timing measurement device using a component-invariant vernier delay line”, Proceeding ITC 2001, pp. 858 -867, 2001.

    [11] A. H. Chan and G. W. Roberts, “A deep sub-micron timing measurement circuit using a single-stage Vernier delay line”, Proceeding IEEE CICC, pp 77 -80, 2002.

    [12] C. Kimsal and J. B. Wilstrup, Time Interval Measurement System Incorporating a Linear Ramp Generation Circuit, US patent 6,194,925, to Wavecrest Corp.,Patent and Trademark Office, Washington, D.C., 2001.

    [13] R. L. Sumner, Apparatus and Method for measuring Time Interval with Very High Resolution, US patent 6,137,749, to LeCroy Corp., Patent and Trademark Office, Washington, D.C., 2000.

    [14] J. O’Hern and N. Schindler, High Resolution Time Inetrval Measuring Circuit Employing a Balanced Crystal Oscillator, US patent 3,325,750, to General Electric Co., Patent and Tradmark Office, Washington, D.C., 1967.

    [15] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: a soc infrastructure”, Proceedings IEEE D&T, Vol.19, pp. 22–34, 2002.

    [16] N. Abaskharoun, and G. W. Roberts, “Circuits for on-chip sub-nanosecond signal capture and characterization”, Process IEEE CICC, pp. 251-254, 2001.

    [17] E. Raisanen-Ruosalainen, T. Rahkonen, and J. Kostamovaara, “Time Interval Measure- ments Using Time-to-Voltage Conversion with Built-in Dual-Slope A/D Conversion”, Proc. of ISCAS, Vol.5, pp. 2573-2576, 1991.

    [18] E. Raisanen-Ruosalainen, T. Rahkonen, and J. Kostamovaara, “A time digitizer with interpolation based on time-to-voltage conversion”, Proceedings on MWSCAS, Vol.1, pp. 197-200, 1997.

    [19] E. Raisanen-Ruosalainen, T. Rahkonen, and J. Kostamovaara, “A BiCMOS time-to-digital converter with 30 ps resolution”, Proceedings on IEEE ISCAS ’99 Vol.1, pp. 278 -281, 1999.

    [20] M. –J. Hsiao, J. –R. Huang, S. –S. Yang and T. –Y. Chang, “A Built-in Timing Parametric Measurement”, Proceedings of IEEE ITC, pp. 315-322, 2001.

    [21] Louis S. Y. Wang, S. Hossain, and A. Walker, "Leakage Current Cancellation Technique for Low Power Switched-Capacitor Circuits", ISLPED, pp. 310-315, 2001

    [22] Sang-Hoon Lee and Hong June Park, "A CMOS High-Speed Wide-Range Programmable Counter", IEEE Transaction On Circuits and Systems, Vol.49, No.9, pp. 638-642, 2002.

    [23].K.- J. Mo, S. - S. Yang, and T. - Y. Chang, “An timing measurement unit with multi-stage for embedded memory”, Proc. of ASP-DAC, pp. 455-456, 2004.

    [24] S. - R. Lee, M. - J. Hsiao, and T. - Y. Chang, "An access timing measurement unit of embedded memory", Proceedings of the 11th ATS, pp. 104 -109, 2002.

    [25] Daegyu Lee, Jincheol Yoo, and Kyusun choi,"Design Method and Automation of Comparator Generation for flash A/D Converter", Proceeding IEEE ISQED, pp. 138-142, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE