簡易檢索 / 詳目顯示

研究生: 董怡伶
Tung, Yi-Ling
論文名稱: NiCuZn Ferrite 異質陶瓷系統的共燒研究
Co-firing of Integrated Passives with NiCuZn Ferrite Laminates
指導教授: 簡朝和
Jean, Jau-Ho
口試委員: 簡朝和
林樹均
吳振名
許志雄
曾俊元
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 178
中文關鍵詞: 低溫共燒陶瓷不匹配應力束縛燒結
外文關鍵詞: Mismatch stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究異質陶瓷共燒系統的共燒應力發展與材料特性,以及材料在束縛燒結時的緻密行為。首先在第一章簡介積層陶瓷製程的發展並且導引出積層技術的兩大議題:一為積層製程必須面臨與克服的異質材料系統共燒匹配性問題;二為束縛燒結引發元件材料緻密度下降的問題。因此在第二章針對積層陶瓷電感材料:NiCuZn Ferrite多晶陶瓷(NCZ/NCZB)分別與陶瓷基板B2O3-SiO2玻璃+Al2O3多相陶瓷(BSGA)、以及非磁性CuZn Ferrite多晶陶瓷(CZ)所組成的異質共燒系統,探討其在共燒過程中的變形、應力發展,以及共燒界面成分分析。將共燒試片之曲率隨溫度變化的結果代入黏彈性模型分析,可以計算出在共燒時所產生的不匹配應力;同時,此應力亦可以由兩者自由收縮速率的差值求得。研究結果顯示,利用共燒曲率變化和自由收縮率差值兩者所分別求得到的不匹配應力值十分相近,且其值遠小於燒結驅動力,由此證明共燒後的試片無任何脫層、破裂等共燒缺陷。於共燒界面所產生的元素交互擴散反應亦會影響共燒匹配性,含鉍之NCZB與BSGA層疊共燒時,鉍會藉由擴散與硼矽玻璃固溶並於界面處產生新的低溫鉍玻璃相,導致NCZB與Ferrite共燒不匹配。若採用不含鉍之NCZ則可以成功與BSGA共燒。藉由摻入少許TiO2奈米粉末可大幅提高銀膏的起始收縮溫度,進而成功改善NCZ積層電感結構中之銀導體線圈與Ferrite多晶陶瓷的共燒匹配性。而NCZ積層電感中嵌入非磁性CZ Ferrite薄層可以使電感在大電流負載下,仍能維持穩定的電感量。
    緊接著在第三章中針對積層LC濾波器材料: NiCuZn Ferrite多晶陶瓷(NCZ)與介電材料Bi-Zn-Nb多晶陶瓷(BZN)所組成的異質共燒系統,探討其在共燒過程中的變形、應力發展,以及共燒界面成分分析。同樣利用黏彈性模型計算出在共燒時所產生的不匹配應力,且其值皆遠小於燒結驅動力,亦說明共燒後的試片無任何共燒缺陷。利用曲率變化所計算之不匹配應力值其數量級較以線性收縮速率差所計算的不匹配應力來得小許多。造成此差異的主要原因乃由於線性收縮速率差是材料分別在自由燒結情況下量測得到,而曲率變化則來自於共燒情況下的量測,由於在共燒下產生部分束縛拉鋸效應以及在共燒界面生成的擴散現象,使得原本材料彼此在自由燒結下的收縮不匹配減小。根據第二、三章各個NiCuZn Ferrite異質共燒系統的實驗結果,雙層共燒結構的曲率變化,與兩材料於自由燒結下的線性收縮速率差隨溫度變化的趨勢以及其數量級十分接近,說明了以各材料系統於自由燒結下之線收縮曲線的量測結果來預測共燒行為的可行性。
    最後在第四章中利用NiCuZn Ferrite多晶陶瓷與犧牲層氧化鋁所組成的束縛燒結系統為研究對象,觀察Ferrite在PLAS束縛燒結下的各種緻密行為,並且針對體黏度、異向性、平面應力、以及燒結機制等要素來探討Ferrite在束縛燒結下無法達緻密化的成因。本章成功量測出Ferrite於自由燒結與束縛燒結時的體黏度值並且發現在特定溫度以及燒結密度下,Ferrite在束縛燒結下體黏度值較自由燒結時來得大許多。根據顯微結構以及等向性模型的分析結果得知Ferrite在束縛燒結時產生了相當程度的異向性行為,其Ferrite顆粒僅能沿著Z軸向來流動。經由平面張應力以及燒結驅動力的量測發現,Ferrite與束縛層側向間所產生的平面張應力完全抵銷了X、Y軸向的燒結驅動力,進而導致束縛燒結體的整體燒結趨動力下降。而根據燒結活化能的分析亦得知Ferrite在束縛燒結時的燒結機制發生轉變。為了提升Ferrite在束縛燒結時的緻密速率使其與自由燒結時相同,所需要施以的單軸向壓應力亦被計算與量測出來。利用本章實驗結果,將在束縛燒結下無法緻密化的NiCuZn Ferrite多晶陶瓷系統與可達緻密化的玻璃陶瓷系統相互比較,可初步歸納出多晶材料系統在束縛燒結下無法達緻密化的因素條件。


    圖表索引 iii 第一章 簡介 1 1.1 積層陶瓷製程與異質共燒系統 1 1.1.1 共燒不匹配應力 3 1.1.2 束縛燒結技術 6 1.1.2.1 束縛燒結-施加外加應力 6 1.1.2.2 束縛燒結-束縛在不收縮的生胚薄片或剛性基板上 7 1.1.3 束縛燒結延遲緻密成因 8 1.1.3.1 平面張應力 11 1.1.3.2 異向性 13 1.1.3.3 燒結機制 17 1.2 論文緣起 18 第二章 積層陶瓷電感 20 2.1 前言 20 2.2 實驗方法 24 2.3 實驗結果與討論 28 2.3.1 NiCuZn Ferrite多晶陶瓷/B2O3-SiO2玻璃+Al2O3陶瓷共燒系統 29 2.3.1.1 鉍元素引發界面反應與共燒缺陷 29 2.3.1.2 各組成材料收縮差異 31 2.3.1.3 共燒曲率發展 32 2.3.1.4 單軸向黏度測量 33 2.3.1.5 不匹配應力與燒結驅動力 36 2.3.2 NiCuZn Ferrite多晶陶瓷/非磁性CuZn Ferrite陶瓷共燒系統 40 2.3.2.1 各組成材料收縮差異 40 2.3.2.2 共燒曲率發展與共燒界面 41 2.3.2.3 不匹配應力與燒結驅動力 42 2.3.2.4 NCZ/CZ/NCZ積層電感 44 2.4 結論 48 第三章 積層LC濾波器 49 3.1 前言 49 3.2 實驗方法 51 3.3 實驗結果與討論 54 3.3.1 各組成材料收縮差異 54 3.3.2 共燒曲率發展與共燒界面 55 3.3.3 不匹配應力與燒結驅動力 56 3.4 結論 61 第四章 NiCuZn Ferrite多晶陶瓷系統於PLAS束縛燒結下延遲緻密成因以及達到與自由燒結相同緻密速率所需之外加應力 63 4.1 前言 63 4.2 實驗方法 67 4.3 實驗結果 69 4.3.1 束縛燒結試片結構的應力效應 69 4.3.2 緻密行為 71 4.3.3 平面應力 72 4.3.4 外加應力 74 4.4 討論 77 4.4.1 燒結黏性分析 77 4.4.1.1 自由燒結 77 4.4.1.2 束縛燒結 78 4.4.2 異向性行為 83 4.4.2.1 體黏度 83 4.4.2.2 顯微結構與異向性因子 85 4.4.2.3 等向性模型 91 4.4.3 燒結驅動力 93 4.4.4 燒結活化能 97 4.4.5 理論計算外加應力值 99 4.4 結論 101 參考資料 103

    [1] H. Stetson, “Multilayer Ceramic Technology,” Ceramics and Civilization, 3, 307-22 (1987)
    [2] W. J. Gyuvk, “Methods of Manufacturing Multilayered Monolithic Ceramic Bodies,” U.S. Pat. No. 3192086 (1965).
    [3] H. Stetson, “Methods of Making Multilayer Circuits,” U.S. Pat. No.3189978 (1965).
    [4] B. Schwartz, “Microelectronics Packaging: 11,” Am. Ceram. Soc. Bull., 63 [4] 577-81 (1984).
    [5] S. H. Knickerbocker, A. H. Kumar and L. W. Herron, “Cordierite Glass-Ceramics for Ceramic Packaging,” Am. Ceram. Soc. Bull., 72 [1] 90-95 (1993).
    [6] S. K. Muralidhar, G. J. Roberts, A. S. Shaikh, D. J. Leandri, D. L. Hankey, L. Dana and T. J. Vlach, “Low Dielectric, Low Temperature Fired Glass Ceramics,” U.S. Pat. No. 5258335 (1993).
    [7] F. F. Lange and M. Metcalf, “Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering,” J. Am. Ceram. Soc., 66 [6] 398-406 (1983).
    [8] J. H. Jean and C. R. Chang, “Camber Development during Cofiring Ag-Based Low-Dielectric-Constant Ceramic Package,” J. Mater. Res., 12 [10] 2743-50 (1997).
    [9] J. H. Jean, C. R. Chang and Z. C. Chen, “Effect of Densification Mismatch on Camber Development during Cofiring Ni-Based Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 80 [9] 2401-06 (1997).
    [10] J. C. Chang and J. H. Jean, “Camber Development During the Cofiring of Bi-Layer Glass-Based Dielectric Laminate,” J. Am. Ceram. Soc., 88 [5] 1165–70 (2005).
    [11] R. T. Hsu and J. H. Jean, “Key Factors Controlling Camber Behavior During the Cofiring of Bi-Layer Ceramic Dielectric Laminates,” J. Am. Ceram. Soc., 88 [9] 2429–34 (2005).
    [12] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-55 (1989).
    [13] C. Hillman, Z. Suo, and F. F. Lange, “Cracking of Laminates Subjected to Biaxial Tensile Stresses,” J. Am. Ceram. Soc., 79 [8] 2127-33 (1996).
    [14] R. K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,” J. Am. Ceram. Soc., 76 [10] 2475-85 (1993).
    [15] P. Z. Cai, D. J. Green and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: I, Experimental Observations of Processing Defects, ”J. Am. Ceram. Soc., 80 [8] 1929-39 (1997).
    [16] P. Z. Cai, D. J. Green and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: II, Viscous Stress Computation,” J. Am. Ceram. Soc., 80 [8] 1940-48 (1997).
    [17] J. B. Ollagnier, D. J. Green, O. Guillon and J. Rodel, “Constrained Sintering of a Glass Ceramic Composite: II. Symmetric Laminate,” J. Am. Ceram. Soc., 92 [12] 2900-06 (2009).
    [18] J. B. Ollagnier, O. Guillon and J. Rodel, “Constrained Sintering of a Glass Ceramic Composite: I. Asymmetric Laminate,” J. Am. Ceram. Soc., 93 [1] 74-81 (2010).
    [19] K. R. Venkatachari and R. Ra, “Shear Deformation and Densification of Powder Compacts,” J. Am. Ceram. Soc., 69 [6] 499–506 (1986).
    [20] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-I, Constitutive Model for a Sintering Body,” Acta Metall., 36 [9] 2393-97 (1988).
    [21] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-II, Comparison of Constitutive Models,” Acta Metall., 36 [9] 2399-409 (1988).
    [22] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-III, Rigid Inclusions,” Acta Metall., 36 [9] 2411–16 (1988).
    [23] P. Z. Cai, G. L. Messing and D. J. Green, “Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80 [2] 445-52 (1997).
    [24] C. C. Huang and J. H. Jean, “Stress Required for Constrained Sintering of a Ceramic-Filled Glass Composite,” J. Am. Ceram. Soc., 87 [8] 1454-58 (2004).
    [25] C. D. Lei and J. H. Jean, “Effect of Crystallization on the Stress Required for Constrained Sintering of CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 88 [3] 599-603 (2005).
    [26] J. B. Ollagnier, O. Guillon, and J. Rodel, “Viscosity of LTCC Determined by Discontinuous Sinter-Forging,” Int. J. Appl. Ceram. Technol., 3 [6] 437–41 (2006).
    [27] Y. C. Lin and J. H. Jean, “Constrained Densification Kinetics of Alumina/ Borosilicate Glass+Alumina/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-54 (2002).
    [28] S. Y. Tzeng and J. H. Jean, “Stress development during Constrained Sinetring of Alumina/Glass/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [2] 335-40 (2002).
    [29] J. C. Chang, J. H. Jean and Y. Y. Hung, “The Effect of Applied Stress on the Densification of a Low-Temperature Cofired Ceramic-Filled Glass System Under Constrained Sintering,” J. Am. Ceram. Soc., 92 [9] 1946-50 (2009).
    [30] K. R. Mikeska and D. T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” U.S. Pat. 5454741 (1994).
    [31] B. Geller, B. Thaler, A. Fathy, M. J. Liberatore, H. D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enabling Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).
    [32] T. J. Garino and H. K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-17 (1987).
    [33] T. J. Garino and H. K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-57 (1990).
    [34] R. Zuo, E. Aulbach and J. Rodel, “Experimental Determination of Sintering Stresses and Sintering Viscosities,” Acta Mater., 51 [15] 4563-74 (2003).
    [35] Y. C. Lin and J. H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., 87 [2] 187-91 (2004).
    [36] J. W. Choe, J. N. Calata and G. Q. Lu, “Constrained-Film Sintering of a Gold Circuit Paste,” J. Mater. Res., 10 [4] 986-94 (1995).
    [37] D. J. Green, O. Guillon and J. Rodel, “Constrained Sintering: A Delicate Balance of Scales,” J. Eur. Ceram. Soc., 28, 1451-66 (2008).
    [38] A. Atkinson, J. S. Kim, R. Rudkin, S. Taub and X. Wang, “Stress Induced by Constrained Sintering of 3YSZ Film Measured by Substrate Creep,” J. Am. Ceram. Soc., 94 [3] 717-24 (2011).
    [39] R. Zuo, E. Aulbach and J. Rodel, “Viscous Poisson’s Coefficient Determined by Discontinuous Hot Forging,” J. Mater. Res., 18 [9] 2170-76 (2003).
    [40] J. B. Ollagnier, O. Guillon and J. Rodel, “Effect of Anisotropic Microstructure on the Viscous Properties of an LTCC Material,” J. Am. Ceram. Soc., 90 [12] 3846–51 (2007).
    [41] O. Guillon, L, Weiler and J. Rodel, “Anisotropic Microstructure Development During the Constrained Sintering of Dip-Coated Alumina Thin Film,” J. Am. Ceram. Soc., 90 [5] 1394-400 (2007).
    [42] O. Guillon, S. Krauβ and J. Rodel, “Influence of Thickness on the Constrained Sintering of Alumina Films,” J. Eur. Ceram. Soc., 27 [7] 2623–27 (2007).
    [43] R. K. Bordia, R. ZuO, O. Guillon, S. M. Salamone and J. Rodel, “Anisotropic Constitutive Laws for Sintering Bodies,” Acta Mater., 54 [1] 111–18 (2006).
    [44] O. Guillon, E. Aulbach and J. Rodel, “Constrained Sintering of Alumina Thin Films: Comparison Between Experiment and Modeling,” J. Am. Ceram. Soc., 90 [6] 1733-37 (2007).
    [45] H. Su, H. W. Zhang, X. L. Tang, Y. L. Jing and B. Y. Liu, “Electromagnetic properties of Mg-Substituted NiCuZn Ferrites for Multilayer Chip Inductors Applications,” IEEE Trans. Magn., 45, 2050-52 (2009).
    [46] A. Nakano, S. Saito and T. Nomura, “Composite MultilayerParts,” U.S. Pat. No. 5476728 (1995).
    [47] K. Tsuzuki, “Multilayer Coils,” Eur. Pat. No. 1739695 (2007).
    [48] H. I. Hsiang, L. T Mei, C. S. Hsi, Y. L. Liu and F. S. Yen, “Electrical Properties of Low-Temperature Sintered Copper and Titanium-Codoped Copper Zinc Ferrites,” J. Alloys Comp., 502, 163-68 (2010).
    [49] 呂秉軍,“離子擴散對鎳銅鋅鐵氧磁體與硼矽玻璃陶瓷共燒的影響”,國立成功大學資源工程學系,碩士論文 (2012)。
    [50] 何宗昇,“硼矽玻璃添加於銀膏中對束縛燒結應力的影響”,國立清華大學材料科學工程學系,碩士論文 (2004)。
    [51] X. Liu, “Interface and Ionic Interdiffusion in Cofired Dielectrics/Ferrite Layer Composites,” J. Electroceram., 29, 56-61 (2012)
    [52] W. Ren, S. Trolier-McKinstry, C. A. Randall and T. R. Shrout, “Bismuth Zinc Niobate Pyrochlore Dielectric Thin Films for Capacitive Applications,” J. Appl. Phys., 89 [1] 767-74 (2001)
    [53] R. Zuo and J. Rodel, “Temperature Dependence of Constitutive Behavior for Solid-State Sintering of Alumina,” Acta Mater., 52 [10] 3059-67 (2004).
    [54] J. H. Jean and C. H. Lee, “Effects of Lead (II) Oxide on Processing and Properties of Low-Temperature-Cofirable Ni-Cu-Zn Ferrite,” J. Am. Ceram. Soc., 82 [2] 343-50 (1999).
    [55] 李國豪,“低溫燒結之玻璃陶瓷系統在高溫之流變行為研究”,國立清華大學材料科學工程學系,碩士論文 (2012)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE