研究生: |
黃鯖珮 Huang, Cing-Pei |
---|---|
論文名稱: |
CMOS MEMS微加速度計與低雜訊電容感測電路之整合及實現 Integration and Implementation of CMOS-MEMS Microaccelerometer and low-noise Capacitive Sensing Circuits |
指導教授: |
陳榮順
Chen, Rongshun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | CMOS MEMS 、微加速度計 、電容感測電路 |
外文關鍵詞: | CMOS MEMS, Accelerometer, Capacitive Sensing Circuit |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用tsmc 0.35μm 2P4M標準CMOS製程平台以及相容於CMOS後製程,設計及製作平面式加速度計並整合其電容感測電路。本研究先實現單軸加速度感測器進而推廣至雙軸感測器。雙軸感測共用一質量塊並預期能同時量測平面X、Y方向加速度;而元件感測介面是採用全差動式,有更高的敏感度及較佳抵抗雜訊的能力。由於感測訊號極小,因此考量雜訊干擾並建立雜訊模型和設計符合元件之電容感測介面電路。電路端設計目標為低雜訊且具有可調靈敏度之功能,並探討元件與電路整合時所需考量的議題。本研究成功地將單軸加速度計與感測電路整合,量測結果其靈敏度為6.1 mV/g。
This study presents a capacitance sensing circuit with low noise and tuned-sensitivity by integrating an in-plane microaccelerometer, included one-axis and dual-axis sensors. The dual-axis microaccelerometer is monolithic using single proof-mass to sense in-plane directions. The interface of microaccelerometer is fully-differential which is capable of reducing common-mode noise and offering higher resolution. Futhermore, this work constructs a noise model to study how to suppress the noise which influences the sensitive signal effectively. The microstructure and the capacitive sensing circuit were fabricated through tsmc 0.35 μm mixed-signal 2P4M polycide 3.3/5 V process. As a result, the microstructure with one-axis sensing is successfully integrating with capacitive sensing circuit. Experimental results showed that the whole chip sensitivity measurement is 6.1 mV/g.
[1] P. Scheeper, J. O. Gullov and M. Kofoed, “A piezoelectric triaxial accelerometer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 131-133, 1996.
[2] L. P. Wang, R. A. Wolf, Jr., Y. Wang, K. K. Deng, L. Zou, R. J. Davis and S. Trolier-McKinstry, “Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers,” Journal of Microelectromechanical Systems, Vol. 12, pp. 433-439, 2003.
[3] S. Huang, X. Li, Z. Song and Y. Wang, “A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 993-1000, 2005.
[4] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf and T. W. Kenny, “A high-performance planar piezoresistance accelerometer,” Journal of Microelectromechanical Systems, Vol. 9, pp. 58-66, 2000.
[5] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy and A. Boyer, “Design of a micromachined thermal accelerometer: thermal simulation and experimental results,” Microelectronics Journal, Vol. 34, pp. 275-280, 2003.
[6] C.-H. Liu and T. W. Kenny, “A high-precision, wide-bandwidth micromachined tunneling accelerometer,” Journal of Microelectromechanical Systems, Vol. 10, pp. 425-433, 2001.
[7] H. K. Rockstad, T. K. Tang, J. K. Reynolds, T. W. Kenny, W. J. Kaiser and T. B. Gabrielson, “A miniature, high-sensitivity, electron tunneling accelerometer,” Sensors and Actuators: A, Vol. 53, pp. 227-231, 1996.
[8] H. Luo, G. Zhang, G. K. Fedder and L. R. Carley, “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromechanical Systems, Vol. 11, pp. 188-195, 2002.
[9] Y. Matsumoto, M. Nishimura, M. Matsuura and M. Ishida, “Three-axis SOI capacitive accelerometer with PLL C-V converter,” Sensors and Actuators:A, Vol. 75, pp. 77-85, 1999.
[10] H. Qu, D. Fang and H. Xie, “A single-crystal silicon 3-axis CMOS- MEMS accelerometer”, in Proc. IEEE Sensors 2004, Vienna, Austria, Oct. 24–27, pp. 661–664, 2004.
[11] CICeNEWS, January 15th, 2007 Volume75.
[12] J. Wu, G. K. Fedder and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50 monolithic CMOS MEMS accelerometer,” Journal of Solid State Circuits, Vol. 39, pp. 722–730, 2004.
[13] J. Chae, H. Kulah and K. Najafi, “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry,” Journal of Microelectromechanical Systems, Vol. 13, pp. 628-635, 2004.
[14] G. Zhang, “Design and Simulation of A CMOS-MEMS Accelerometer”, MS Thesis, Carnegie Mellon University, 1998.
[15] H. Qu, D. Fang and H. Xie, “A Monolithic CMOS-MEMS 3-Axis with a low-noise, low-power dual-chopper amplifier,” IEEE Sensors journal, Vol. 8, pp 1511-1518, 2008.
[16] J. Chae, H. Kulah, and K. Najafi, “A monolithic three-axis micro-g micromachined silicon capacitive accelerometer,” Journal of Microelectromechanical Systems, Vol. 14, pp. 235-242, 2005.
[17] M. Lemkin and B. E. Boser, “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics,” Journal of Solid State Circuits, Vol. 34, pp. 456–468, 1999.
[18] C. Wang, M. H. Tsai, C. M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully differential gap-closing capacitance sensing electrodes,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 1275-1280, 2007.
[19] G. Zhang, H. Xie, L. E. Rosset, and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” in Tech. Dig. 12th IEEE Int. Conf. Micro Electro Mechanical System (MEMS'99) Orlando, FL, pp. 606-611, 1999.
[20] A. Bakker, K. Thiele, and J. H. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” Journal of Solid State Circuit, Vol. 35, pp. 1877–1883, 2000.