簡易檢索 / 詳目顯示

研究生: 朱鈺劭
Chu, Yu-Shoa
論文名稱: 以賽局理論達到團體賽程排點最佳化
A Game Theoretic Approach to Optimal Scheduling of Matches in Team Competitions
指導教授: 李端興
Lee, Duan-Shin
口試委員: 張正尚
Chang, Cheng-Shang
黃之浩
Huang, Chih-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 團體賽策略賽局廣域賽局納許平衡
外文關鍵詞: team-competition, strategic-game, extensive-game, Nash-equilibrium
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們將兩種基本的團體賽制轉化為策略賽局
    以及廣域賽局,並使用賽局理論來分析團體賽中的排點機制。此
    外,我們也可以利用賽局中的納許平衡來優化排點。再者,為了
    捕捉教練們對各種贏法的偏好,我們進而提供了三種參入權重因
    子的模型。在模擬的部份,我們蒐集了星海爭霸中兩大團體賽的
    資料,用以展現我們提出模型的潛能。


    In this paper, we formulate the two basic team competition systems
    into the strategic and the extensive games, which allow us to use game
    theoretic approach to analyze the scheduling of matches. Furthermore,
    we can find the Nash equilibrium and the subgame perfect equilibrium as
    a way to optimize the strategies for athletes designating problem. Also,
    in addition to model the coaches’ preferences, three weighted versions of
    the original model are provided in the later section. In the simulations,
    wecollecttwomajorteamcompetitiondataofStarCraftIItodemonstrate
    the potential of the proposed method.

    中 文 摘 要 i Abstract ii Acknowledgements iii List of Figures vi List of Tables vii 1 Introduction 1 2 A Strategic Game Formulation 4 2.1 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . 7 3 An Extensive Game Formulation 13 3.1 Subgame Perfect Equilibrium . . . . . . . . . . . . . . . 16 3.2 Analysis of Match 2 . . . . . . . . . . . . . . . . . . . . 17 3.3 Analysis of Match 1 . . . . . . . . . . . . . . . . . . . . 22 4 Two Hybrid Competition Systems 26 4.1 Proleague Format . . . . . . . . . . . . . . . . . . . . . 26 4.2 Taiwan eSports League(TeSL) Format . . . . . . . . . . 28 5 Weighted Version 31 5.1 Model 1 and Model 2 . . . . . . . . . . . . . . . . . . . 31 5.2 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6 Numerical Results 41 6.1 Strategic game simulation . . . . . . . . . . . . . . . . . 42 6.2 Extensive game simulation . . . . . . . . . . . . . . . . 47 7 Conclusion 52 8 Appendix 54

    [1] Martin J. Osborne. An introduction to game theory. New York: Ox-
    ford University Press, 2004.
    [2] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization
    and Its Applications. New York: Academic Press, Inc., 1979.
    [3] Mark E Glickman. “Parameter estimation in large dynamic paired
    comparison experiments”. Journal of the Royal Statistical Society:
    Series C (Applied Statistics) 48.3 (1999), pp. 377–394.
    [4] James Kennedy. “Particle swarm optimization”. Encyclopedia of
    machine learning. Springer, 2011, pp. 760–766.
    [5] Carlton E Lemke and Joseph T Howson Jr. “Equilibrium points of
    bimatrix games”. Journal of the Society for Industrial and Applied
    Mathematics 12.2 (1964), pp. 413–423.

    QR CODE