簡易檢索 / 詳目顯示

研究生: 陳柏欽
Chen, Po-Chin
論文名稱: 氧化鈦相關材料之合成及其應用之探討
Syntheses of Titanium Oxide Related Materials and Discussions on Their Applications
指導教授: 李紫原
Lee, Chi-Young
口試委員: 陳金銘
徐文光
陳福榮
裘性天
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 123
中文關鍵詞: 二氧化鈦鋰離子電池光觸媒鈦酸鹽
外文關鍵詞: titanium dioxide, lithium ion battery, photocatalyst, titanate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用水熱法將四異丙基鈦分別與甲酸或乙酸反應以得到各種不同形貌與結構的氧化鈦相關產物。在乙酸的合成環境下,可以合成出三種不同產物,分別是條狀鈦酸鹽 (FT)、菊花狀鈦酸鹽 (CT) 以及橢圓二氧化鈦 (ET)。其中以CT的形狀較特別,其外型是由許多奈米等級的花瓣形薄片聚在一起所構成的微米級的顆粒。在結構方面,FT與CT分別是兩種不同結構的新型鈦酸鹽類,這兩種鈦酸鹽晶體中的層狀結構均有乙酸及乙酸根插層在內,可藉由FTIR及TGA-MS的分析獲得證實。而這些插層在結構中的有機物在溫度高於350 oC時可被碳化並形成一均勻的碳網絡。同時,在高溫煅燒的過程中,CT也會經由相轉換轉變為具有TiO2-B及anatase晶相的二氧化鈦。因此,透過CT的碳化,可以得到碳/二氧化鈦的複合材料,並拿來做為鋰離子二次電池的陽極材料。這種碳/二氧化鈦複合材在鋰離子二次電池的應用上表現相當優異,尤其是在大電流的充放電速率下,仍可保有相當高的電容量。(在10C rate充放電速率下仍有145 mAh/g)
    本研究亦將CT在800 oC煅燒1小時,以得到純anatase相的二氧化鈦,在此將其命名為CT800。值得注意的是,CT800的光催化效能非常良好,比市售商用的二氧化鈦 (P25) 還要好上許多,其反應速率常數k值是P25的1.4倍。為了探索究竟是哪些因素造成CT800有如此優異的光催化效能,本研究對CT800進行了一系列的分析。首先將CT800放進硝酸銀的水溶液中並進行照光,觀察銀離子被還原在CT800上的位置,以探討CT800在被光激發後所產生之電子的遷移行為。由HADDF以及EDX對單一顆CT800的顆粒做分析,所得到的結果均顯示銀離子傾向被還原在較靠近CT800的中心位置。再者,由EPR光譜分析也得到相同的結果,顯示電子的遷移行為的確是由CT800的花瓣形薄片之尖端往整個顆粒的中心移動。 這是由於「多重能帶接面」所造成,在本研究中亦將此現象暫名為「串流效應」。而藉由此串流效應使電子傾向集中往顆粒的中心遷移,將可減少其與電洞之再結合反應發生,進而大幅提升其光催化效能。此外,CT800的特殊形貌亦提供兩種好處,其菊花狀的外型不但可誘使入射光在其內發生多次散射,進而更有效的利用入射光能量之外,還可以藉由其花瓣形薄片上之晶界所貢獻的「高活性點」來提高材料的光催化反應活性。
    另一方面,在甲酸的合成環境中,若將反應溫度設定在較低的溫度時 (100 oC) 可得到接近非晶型態的柱狀鈦酸鹽。當反應時間拉長後,即可得到繡球花狀的鈦酸鹽類產物,此結果與本實驗室先前在迴流裝置中利用溶膠-凝膠法所得到的的研究成果非常相似。當反應溫度提高至150 oC後,出現了具有{101}露面的二氧化鈦八面體顆粒,藉由TEM及XRD的分析可知其結晶相為anatase。
    本實驗亦於合成環境中加入0.1 M之氟離子進行反應,在反應中氟離子會傾向與二氧化鈦{001}面上之五配位鈦原子鍵結,進而抑制晶體在<001>方向上的成長。因此,在150 oC的溫度下我們可以得到露面為{001}之片狀二氧化鈦。若進一步提高反應環境中之氟離子濃度製0.2 M,則可發現片狀顆粒的厚度急遽下降,並且每片薄片傾向聚集在一起長成類似花朵狀的二氧化鈦,其露面也是{001}。由於花朵狀二氧化鈦是由超級薄片所構成的,大幅縮短了鋰離子的擴散路徑,是故我們預期這材料能在鋰離二次電池的效能上有優良的表現。此外,將來亦可針對上述這些材料進行其光催化活性之探討。


    In my study, various titanium-oxide related materials were obtained from reacting TTIP with formic acid or acetic acid by solvothermal method. In the case of acetic acid, three kinds of product were synthesized, which are fibrillar titanate (FT), chrysanthemum-like titanate (CT) and elliptic anatase TiO2 (ET). Both FT and CT are the new titanates which have acetic acid and acetate intercalated in the layers of their crystal structure. The intercalated organic species were confirmed by FTIR and TGA-MS spectra, and can be carbonized to form the uniform carbon networks at the temperatures over 350 oC. Additionally, CT can be converted to TiO2-B and anatase by calcinations. Hence, C/TiO2 composites with anatase and TiO2-B can be acquired after the carbonization of CT. The C/TiO2 composites were used as the active material of the anode of Li-ion battery and showed excellent performance (145 mAh/g at 10C rate).
    CT800 is the material obtained by annealing CT at 800 oC for 1 hour. After annealing, the crystal structure can be converted to anatase TiO2 completely, and was utilized in photocatalyst application. Interestingly, CT800 exhibited higher photoactivity than the commercial TiO2 (P25), the k value of CT800 was 1.4 times higher than P25. In order to discover the key factors that governed the photocatalytic properties, the specific reduction of Ag+ ions was carried out and EPR spectra of CT800 were obtained. Both an HADDF image and EDX mapping indicated that the Ag+ ions tended to be reduced close to the center of the micro matrix of CT800. Moreover, the EPR spectra strongly suggest that the excited electrons tended to migrate toward the center of the micro matrix, resulting from a multiple junction, “cascade effect”, which efficiently reduces the recombination of excited electrons and holes and greatly increases the photoactivity. Additionally, the special morphology of CT800 was responsible for not only multi-scattering around 350 nm, which strongly enhancing the harvesting of light, but also the hot spots at the surface of nano sheets and then contributing to its outstanding photocatalytic activity.
    Otherwise, in the case of formic acid, as the reaction takes place at low temperature, the rod-like titanate was formed initially and showed poor crystallinity. Once elongating the reaction time at the same temperature, the hydrangea-like titanate appeared and exhibited better crystallinity. These results are similar to the observations of our previous study that the reaction was taken place by sol-gel method using reflux system. When the temperature was arisen, the {101} exposed octahedron TiO2 was observed and was assigned to anatase TiO2 by TEM and XRD.
    Once the 0.1 M fluorine was contained in the solvents, fluorine bonded to the five-coordinated Ti atoms of the {001} surface and limited the crystal growth along <001>. Hence, the plate-like TiO2 was obtained at 150 oC. Moreover, the thickness of the particle decreased dramatically as the concentration of fluorine increased to 0.2 M. The particles aggregated and became flower-like TiO2, which was also exposed {001} facets. The flower-like TiO2 which is constructed by many ultra-thin nano sheets may have the potential to be used as the active material of the anode of Li-ion battery due to the dramatically decreased in length for Li-ion to intercalate into the material. Furthermore, the photoactivity of these materials could be discovered in the future.

    Tables of Contents Abstract I 中文摘要 III Chapter 1 Introduction and Motivation 1 1-1 Introduction of Titanium Oxide Related Materials 1 1-2 Introductions of TiO2 polymorphs 2 1-2-1 Rutile 4 1-2-2 Anatase 5 1-2-3 Brookite 7 1-2-4 TiO2-B (Bronze) 9 1-2-5 TiO2-H (hollandite) and TiO2-R (ramsdellite) 11 1-2-6 High-pressure Forms 13 1-3 Applications of TiO2 15 1-3-1 Lithium-ion batteries 15 1-3-2 Photocatalyst 39 1-4 Motivations 42 Chapter 2 Experimental Procedures 43 2-1 Synthesis of Ti-related Materials in Formic Acid 43 2-1-1 Rod-like Titanate, Hydrangea-like Titanate and Octahedron TiO2 43 2-1-2 Synthesis of plate-like and flower-like TiO2 43 2-2 Synthesis of Ti-related Materials in Acetic Acid 44 2-2-1 Fibrillar Titanate, Chrysanthemum-like Titanate and Ellipse TiO2 44 2-3 Preparation of Lithium-ion Battery Test 44 2-4 Photocatalytic experiment of TiO2 45 2-5 Characterization and analysis 45 Chapter 3 Syntheses and Structure Characterizations of Ti-related Materials in Acetic Acid 47 3-1 Abstract 47 3-2 Syntheses of Fibrillar Titanate, Chrysanthemum-like Titanate and Elliptic TiO2 47 3-2-1 Fibrillar Titanate 47 3-2-2 Chrysanthemum-like Titanate 48 3-2-3 Elliptic TiO2 49 3-3 Analysis of Acetate/AcOH Intercalated Titanates 49 3-3-1 SEM 49 3-3-2 XRD and TEM 52 3-3-3 FTIR 55 3-3-4 TGA-MS 56 3-3-5 Phase Transformation of Acetate/AcOH Intercalated Titanates at High Temperature 60 3-4 Conclusions 65 Chapter 4 Self-carbonized Lamellar Nano/Micro Hierarchical Structure C/TiO2 and Its Li-ion Intercalation Performance 66 4-1 Abstract 66 4-2 Synthesis and Structure Characterization of lamellar nano/micro hierarchical structure C/TiO2 66 4-3 Lithium-ion Intercalation Performance of Chrysanthemum-like TiO2 and C/TiO2 70 4-4 Conclusions 75 Chapter 5 The “Cascade Effect” of Nano/Micro Hierarchical Structure: a New Concept for Designing the High Photoactivity Materials - an Example for TiO2 77 5-1 Abstract 77 5-2 Synthesis and Structure Characterization of Nano/Micro Hierarchically Structured TiO2 78 5-2-1 Preparation of TiO2 78 5-2-2 Characterization of Materials 78 5-2-3 Morphology and Crystal Structure of the Material 78 5-3 Photocatalytic performance of Nano/Micro Hierarchically Structured TiO2 80 5-4 Discussions of the Key Factors of Photocatalyst 82 5-4-1 Effects of Surface Area and the Range of Absorbed Light 82 5-4-2 Effects of Hetero-junction and Multiple-junction (Cascade Effect) 83 5-4-2-2 Verifications of the Cascade Effect by Photocatalyst 87 5-4-2-3 Verifications of the Cascade Effect by electron paramagnetic resonance (EPR) 90 5-4-3 Effect of Hot Spots 92 5-4-4 Effect of the light harvesting 93 5-5 Conclusions 94 Chapter 6 Syntheses and Structure Characterizations of Ti-related Materials in Formic Acid 96 6-1 Abstract 96 6-2 Syntheses and Structure Characterization of Rod-like Titanate, Hydrangea-like Titanate and Octahedron TiO2 97 6-3 Syntheses and Structure Characterization of Plate-like and Flower-like TiO2 102 Chapter 7 Conclusions 109 References 111 Publication List 122   List of Figure Captions Figure 1-1 The structure of rutile viewed in the (a) [001] direction. (b) [110] direction. The unit cell of rutile is enclosed by a black square. 5 Figure 1-2 The structure of anatase viewed in the [100] direction. The unit cell of anatase is enclosed by a black rectangle. The blue and orange sheets denote different zigzag sheets at different position along a-axis. 7 Figure 1-3 (a) shows the unit cell of brookite, (b) is the structure of brookite viewed in the [-1 8 -1] direction. 8 Figure 1-4 The TiO2-B structure viewed in the (a) [014] direction. (b) [010] direction. 10 Figure 1-5 (a) the traditional synthetic process of TiO2-B (b) a new method to synthesize TiO2-B via heating the HCOOH-intercalated titanate directly 11 Figure 1-6 Crystallographic structures of (a) TiO2-H and (b) TiO2-R, respectively. The unit cells of structures are enclosed by black cuboids. 13 Figure 1-7 Unit cells of high-pressure form of TiO2. (a) TiO2-II (b) MI (c) OI (d) OII (e) cubic. 15 Figure 1-8 Voltage profiles of rutile electrodes with different particle sizes and shapes cycled at a rate of C/20 between 1 and 2.8 V. [28] 19 Figure 1-9 Cyclic voltammogram of anatase. 21 Figure 1-10 (a) The discharging curves of anatase electrode. (b) Li-insertion mechanism into nanosized anatase. [84] 22 Figure 1-11 Cyclic voltammograms of TiO2-B in 1M LiN(CF3SO2)2 + EC/DME (1/1, v/v); scan rate 0.1-1.2 mV/s (in 0.1 mV/s steps for plots from bottom to top). Inset displays the normalized peak current, i/i01, where i01 is the peak current at the slowest scan (0.1 mV/s) and i is the peak current at the actual scan rate.[86] 23 Figure 1-12 (a) the unit cell of TiO2-B (b) the pathways of Li-ion intercalation in TiO2-B.[87] 24 Figure 1-13 (a) Variation of voltage with state-of-charge for discharge then charge of bulk TiO2-B, TiO2-B nanowires, nanotubes, and nanoparticles on the second cycle and (b) corresponding differential capacity plots. Rate 50 mA g-1.[91] 26 Figure 1-14 Cycling behavior of brookite TiO2 with different crystallite sizes. [92] 28 Figure 1-15 Voltage profile of the different TiO2 forms cycled at C/25. [94] 29 Figure 1-16 Rate capability of TiO2 brookite. [94] 30 Figure 1-17 (a) The voltage profile of the test in galvanostatic mode at C/10 (33.5 mA/g). (b) The degradation of capacity upon charge/discharge cycles. (c) The rechargeability of the amorphous TiO2 electrode is investigated at a charge rate of 10C (3.35 A/g).[97] 31 Figure 1-18 Cycling behaviour of TiO2 under the following constant current densities: 0.5 mA cm-2 [62] 32 Figure 1-19 The voltage profile of a Li/LixTiO2 cell showing the initial discharge and the poor electrochemical reversibility of the cell on cycling.[96] 33 Figure 1-20 (a) TiO2-C nanosphere electrodes after cycling SEM image (b) schematic illustration of the efficient mixed conducting 3D networks formed by the TiO2-C nanospheres and acetylene black. TiO2-C (orange).[101] (c) Annular dark-field TEM image of mesoporous TiO2:RuO2 nano-composite (d) corresponding schematic illustration of the self-wired path of deposited RuO2 nano-particles[102] 35 Figure 1-21 (a) SEM image of graphene/anatase TiO2 composite (b) Comparison of the specific capacity at different rates between (I) graphene/anatase TiO2 composite and (II) anatase TiO2 electrode.[103] 36 Figure 1-22 (a) TEM and (b) HRTEM images of carbon nanotube/brookite TiO2 composite. (c) Comparison of the specific capacity at 0.2C rate between carbon nanotube/brookite TiO2 composite and brookite TiO2 electrode.[104] 37 Figure 1-23 (a) TEM image of the carbon/TiO2 (anatase + TiO2-B) composite. (b) Comparison of the specific capacity at different rates between carbon/TiO2 composite and TiO2 electrode.[105] 38 Figure 1-24 (a)-(c) TEM images of C/TiO2 composites with three kinds of morphologies. (d) Discharging capacities of sample I, II and III at 1C rate. Sample I, II and III are corresponding to the C/TiO2 composites shown in (a), (b) and (c), respectively.[106] 39 Figure 1-25 The mechanism of photocatalyst. 40 Figure 1-26 The key factors in photocatalyst and the strategies to achieve these key factors. 42 Figure 3-1 SEM images of (a) FT, (b) FT500, (c) CT, (d) CT500, (e) CT350, (f) C-CT500, (g) SC-CT500 and (h) SC-CT350. The scale of all figures is the same. 51 Figure 3-2 The SEM image of the precipitate made by reacting titanium isopropoxide and acetic acid at 150 oC for 18 hours. 52 Figure 3-3 (a) The low-magnification and (b) high-magnification SEM image of the precipitate made by reacting titanium isopropoxide and acetic acid at 175 oC for 48 hours. 52 Figure 3-4 X-ray diffraction (XRD) patterns of (a) FT and (b) CT. 54 Figure 3-5 (a), (b) TEM and HRTEM images of FT, respectively. (c), (d) TEM and HRTEM images of CT, respectively. 54 Figure 3-6 X-ray diffraction (XRD) patterns of ET. 55 Figure 3-7 Infrared (IR) spectra of FT (black line) and CT (red line). The peaks in the ranges of 1430–1460 cm-1 and 1520–1560 cm-1, were assigned to symmetric and asymmetric stretching vibrations of ν(COO) in acetate, respectively. The peak at 1721 cm-1 was assigned to acetic acid. 56 Figure 3-8 Thermogravimetric analysis (TGA) of FT (red line) and CT (black line). 57 Figure 3-9 TGA-MASS spectra of FT and CT. 59 Figure 3-10 2-D TGA-MASS diagram of FT and CT regarding the ion current corresponding to m/z at 250 and 350 oC, respectively. (m/z = 100 to 125) 60 Figure 3-11 In situ XRD with various temperatures of (a) FT and (b) CT. 62 Figure 3-12 (a) SEM image of FT500, and TEM images of (b) CT350, (c) sc-CT350 and (d) sc-CT500. All pictures show nanopores on the materials. 63 Figure 3-13 X-ray diffraction (XRD) patterns of CT after annealing at (a) 500 oC for 8 h (CT500) and (b) 350 oC for 20 h (CT350). 64 Figure 3-14 Raman spectra of CT350 (red line) and CT500 (black line) 65 Figure 4-1 Differential scanning calorimetry (DSC) analysis of CT under air (red line) and nitrogen atmosphere (black line). 67 Figure 4-2 Raman spectra show D band and G band of C-CT500 (black line), SC-CT500 (red line) and SC-CT350 (blue line). 69 Figure 4-3 TEM images of (a) C-CT500, and HETEM images of (b) C-CT500, (c) SC-CT500 and (d) SC-CT350. The 6.2 Å and 5.8 Å d-spacings belong to TiO2-B; the 3.5 Å d-spacing belongs to anatase. 69 Figure 4-4 Thermogravimetric analysis (TGA) of C/TiO2 composites with (black line) and without (red line) precursor. 70 Figure 4-5 CV curve and fitting peaks of galvanostatic discharging curve of the anode made by (a) (b) SC-CT500 and (c) (d) SC-CT350. The black areas refer to the anatase part, the orange and red areas refer to TiO2-B. 71 Figure 4-6 Charging capacity of different anodes with various charging rates. 72 Figure 4-7 The coulombic efficiency of SC-CT350 and SC-CT500. 73 Figure 4-8 Discharging curves of SC-CT500 (black line) and C-CT500 (red line) in 16th, 20th and 25th cycle. The anode made by C-CT500 showed slight polarization but SC-CT500 didn’t. 75 Figure 5-1 (a) SEM image, (b) XRD pattern and (c) TEM image of CT800. (d), (e) and (f) HRTEM images that correspond to zones 1, 2 and 3 in (c). 80 Figure 5-2 (a) C/C0 versus time for degradation of methylene blue (MB) and (b) ln(C0/C) as a function time for CT800 and p25. C0 and C denote initial concentrations at adsorption equilibrium and concentration of MB at various photodegradation times, respectively. 81 Figure 5-4 (a) STEM image and (b) HAADF image of Ag@CT800. (c) EDX maps of Ti, (d) O and (e) Ag. (f) and (g) HRTEM images of Ag@CT800, revealing that Ag nanoparticles preferentially populate grain boundary of TiO2. 85 Figure 5-5 (a) STEM image and (b) HAADF image of Ag@CT800. (c) EDX maps of Ti, (d) O and (e) Ag. Concentration of AgNO3 (aq) was 25 mM; illumination time was 60 minutes. Following illumination, precipitate was collected using a centrifuge, washed several times in DI-water to remove residual AgNO3 (aq) solvent, and then dried in vacuum. 87 Figure 5-6 (a) SEM image, (b) XRD pattern, (c) TEM image and (d) HRTEM image of CT800g. 88 Figure 5-7 (a) C/C0 versus time for the degradation of methylene blue (MB) and (b) ln(C0/C) as a function of time for CT800 and CT800g. 89 Figure 5-8 EPR spectra of (a) CT800 and (b) CT800g. (c) and (d) EPR signal intensity that corresponds to lattice electron trapping sites in CT800 and CT800g, respectively. (e) and (f) Integrated area under EPR signals that correspond to surface electron-trapping sites in CT800 and CT800g, respectively. 92 Figure 5-9 (a) UV-abs. spectra of CT800 and CT800g powders. (b) The enlargement of (a) by wavelength in the range from 320 to 365 nm. 94 Figure 6-1 SEM images of the product synthesized by heating the solution at (a) 100 oC for 48 h, (b) 100 oC for 96 h and (d) 150 oC for 24 h. (c) the partial enlarged image of (b). (e) and (f) are TEM and HRTEM image of the product synthesized by heating the solution at 150 oC for 24 h. 99 Figure 6-2 (a) XRD patterns of rod-like titanate (RT), hydrangea-like titanate (HT) and octahedron TiO2 (OT). The data were obtained by a Brucker D8-advanced diffractometer (XRD) with Cu Kα radiation (wavelength= 1.54 Å). (b) The X-ray diffraction patterns (XRD) of HCOOH-intercalated titanates after different reaction times. The data was obtained by using synchrotron light source, the incident X-ray energy in this work was 16 keV (wavelength= 0.774907 Å). 101 Figure 6-3 (a) SEM image, (c) XRD pattern and (d) TEM image of the product synthesized in the 0.1 M HF contained mixture. (b) is the partial enlarged image of (a). and (e) is the electron diffraction pattern of (d). 103 Figure 6-4 Clean surfaces of (a) {001} and (b) {101}. Ti and O atoms are represented by grey and red spheres, with six-coordinated Ti, five-coordinated Ti, three-coordinated O and two-coordinated O labeled as 6c-Ti, 5c-Ti, 3c-O and 2c-O, respectively.[144] 104 Figure 6-5 The truncated tetragonal bipyramid crystal form, showing the {001} and {101} facets.[148] 105 Figure 6-6 (a) SEM image, (c) XRD pattern and (d) TEM image of the product synthesized in the 0.2 M HF contained mixture. (b) is the partial enlarged image of (a). and (e) is the electron diffraction pattern of (d). 107   List of Figure Captions Scheme 1 Partial enlarged drawing of CT (shows layer structure with organic species inserted) and two different procedures to form C/TiO2 composites with and without precursors (shown by the blue and the red arrow, respectively). 74 Scheme 2 “Cascade effect” of nano/micro hierarchically structured TiO2. Energy state of the tips of nano sheets is higher than that of central micro matrix, owing to size effect. The image of the sheet in the enlargement was extracted from TEM image. 84 Scheme 3 Syntheses of Ti-related materials in various conditions. 110 List of table Table 1 Lattice parameters of eleven TiO2 polymorphs 3

    References
    (1) Al-Hajjaj, A. A.; Zamora, B.; Bavykin, D. V.; Shah, A. A.; Walsh, F. C.; Reguera, E. International Journal of Hydrogen Energy 2012, 37, 318.
    (2) Bavykin, D. V.; Walsh, F. C. Journal of Physical Chemistry C 2007, 111, 14644.
    (3) Hu, J.-S.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J. Advanced Materials 2008, 20, 2977.
    (4) Huang, J.; Cao, Y.; Liu, Z.; Deng, Z.; Tang, F.; Wang, W. Chemical Engineering Journal 2012, 180, 75.
    (5) Li, J.; Wan, W.; Zhu, F.; Li, Q.; Zhou, H.; Li, J.; Xu, D. Chemical Communications 2012, 48, 389.
    (6) Liu, S.-S.; Lee, C.-K.; Chen, H.-C.; Wang, C.-C.; Juang, L.-C. Chemical Engineering Journal 2009, 147, 188.
    (7) Maloney, R. P.; Kim, H. J.; Sakamoto, J. S. Acs Applied Materials & Interfaces 2012, 4, 2318.
    (8) Yin, J.; Qi, L.; Wang, H. Acs Applied Materials & Interfaces 2012, 4, 2762.
    (9) Zhu, G.-N.; Wang, Y.-G.; Xia, Y.-Y. Energy & Environmental Science 2012, 5, 6652.
    (10) Feist, T. P.; Davies, P. K. Journal of Solid State Chemistry 1992, 101, 275.
    (11) Feist, T. P.; Mocarski, S. J.; Davies, P. K.; Jacobson, A. J.; Lewandowski, J. T. Solid State Ionics 1988, 28, 1338.
    (12) Marchand, R.; Brohan, L.; Tournoux, M. Mater. Res. Bull. 1980, 15, 1129.
    (13) Tsai, M. C.; Chang, J. C.; Sheu, H. S.; Chiu, H. T.; Lee, C. Y. Chemistry of Materials 2009, 21, 499.
    (14) Tsai, M. C.; Tsai, T. L.; Lin, C. T.; Chung, R. J.; Sheu, H. S.; Chiu, H. T.; Lee, C. Y. Journal of Physical Chemistry C 2008, 112, 2697.
    (15) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.
    (16) Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science 2002, 297, 2243.
    (17) Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H.; Wong, P. K.; Zhao, J. C. Environmental Science & Technology 2005, 39, 1175.
    (18) Bousa, M.; Laskova, B.; Zukalova, M.; Prochazka, J.; Chou, A.; Kavan, L. Journal of the Electrochemical Society 2010, 157, A1108.
    (19) Chen, P.-C.; Tsai, M.-C.; Chen, H.-C.; Lin, I. N.; Sheu, H.-S.; Lin, Y.-S.; Duh, J.-G.; Chiu, H.-T.; Lee, C.-Y. Journal of Materials Chemistry 2012, 22, 5349.
    (20) Kerisit, S.; Rosso, K. M.; Yang, Z. G.; Liu, J. Journal of Physical Chemistry C 2010, 114, 19096.
    (21) Saravanan, K.; Ananthanarayanan, K.; Balaya, P. Energy & Environmental Science 2010, 3, 939.
    (22) Liao, J.-Y.; He, J.-W.; Xu, H.; Kuang, D.-B.; Su, C.-Y. Journal of Materials Chemistry 2012, 22, 7910.
    (23) Ma, T. L.; Akiyama, M.; Abe, E.; Imai, I. Nano Letters 2005, 5, 2543.
    (24) Cho, M.; Chung, H. M.; Choi, W. Y.; Yoon, J. Y. Applied and Environmental Microbiology 2005, 71, 270.
    (25) Liu, X. Y.; Zhao, X. B.; Ding, C. X.; Chu, P. K. Applied Physics Letters 2006, 88.
    (26) Ke, T. Y.; Peng, C. W.; Lee, C. Y.; Chiu, H. T.; Sheu, H. S. Crystengcomm 2009, 11, 1691.
    (27) Nayak, J.; Prabakar, K.; Park, J. W.; Kim, H. Electrochim. Acta 2012, 65, 44.
    (28) Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. Advanced Materials 2006, 18, 1421.
    (29) Wu, M. S.; Wang, M. J.; Jow, J. J.; Yang, W. D.; Hsieh, C. Y.; Tsai, H. M. Journal of Power Sources 2008, 185, 1420.
    (30) Murakami, N.; Kawakami, S.; Tsubota, T.; Ohno, T. Journal of Molecular Catalysis a-Chemical 2012, 358, 106.
    (31) Ke, C.-R.; Ting, J.-M. Journal of Power Sources 2012, 208, 316.
    (32) Liang, S. Z.; He, J. F.; Sun, Z. H.; Liu, Q. H.; Jiang, Y.; Cheng, H.; He, B.; Xie, Z.; Wei, S. Q. Journal of Physical Chemistry C 2012, 116, 9049.
    (33) Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P. E.; Levy, F. Journal of Applied Physics 1994, 75, 2042.
    (34) Kitao, M.; Oshima, Y.; Urabe, K. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 1997, 36, 4423.
    (35) van de Krol, R.; Goossens, A.; Meulenkamp, E. A. Journal of Applied Physics 2001, 90, 2235.
    (36) van de Krol, R.; Goossens, A.; Schoonman, J. Journal of Physical Chemistry B 1999, 103, 7151.
    (37) Inaba, M.; Oba, Y.; Niina, F.; Murota, Y.; Ogino, Y.; Tasaka, A.; Hirota, K. Journal of Power Sources 2009, 189, 580.
    (38) Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G. Angewandte Chemie-International Edition 2004, 43, 2286.
    (39) Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. Advanced Materials 2006, 18, 2597.
    (40) Arrouvel, C.; Parker, S. C.; Islam, M. S. Chemistry of Materials 2009, 21, 4778.
    (41) Kavan, L.; Kalbac, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M. Chemistry of Materials 2004, 16, 477.
    (42) Wilkening, M.; Heine, J.; Lyness, C.; Armstrong, A. R.; Bruce, P. G. Physical Review B 2009, 80.
    (43) Wilkening, M.; Lyness, C.; Armstrong, A. R.; Bruce, P. G. Journal of Physical Chemistry C 2009, 113, 4741.
    (44) Latroche, M.; Brohan, L.; Marchand, R.; Tournoux, M. Journal of Solid State Chemistry 1989, 81, 78.
    (45) Akimoto, J.; Gotoh, Y.; Oosawa, Y.; Nonose, N.; Kumagai, T.; Aoki, K.; Takei, H. Journal of Solid State Chemistry 1994, 113, 27.
    (46) Dewhurst, J. K.; Lowther, J. E. Physical Review B 1996, 54, R3673.
    (47) Olsen, J. S.; Gerward, L.; Jiang, J. Z. Journal of Physics and Chemistry of Solids 1999, 60, 229.
    (48) Breneman, G. L.; Willett, R. D. Acta Crystallographica 1967, 23, 334.
    (49) Dubrovinskaia, N. A.; Dubrovinsky, L. S.; Ahuja, R.; Prokopenko, V. B.; Dmitriev, V.; Weber, H. P.; Osorio-Guillen, J. M.; Johansson, B. Physical Review Letters 2001, 87.
    (50) Desgreniers, S.; Lagarec, K. Physical Review B 1999, 59, 8467.
    (51) Lowther, J. E.; Dewhurst, J. K.; Leger, J. M.; Haines, J. Physical Review B 1999, 60, 14485.
    (52) Mattesini, M.; de Almeida, J. S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. Physical Review B 2004, 70.
    (53) Balaya, P. Energy & Environmental Science 2008, 1, 645.
    (54) Borghols, W. J. H.; Wagemaker, M.; Lafont, U.; Kelder, E. M.; Mulder, F. M. Chemistry of Materials 2008, 20, 2949.
    (55) Borghols, W. J. H.; Wagemaker, M.; Lafont, U.; Kelder, E. M.; Mulder, F. M. Journal of the American Chemical Society 2009, 131, 17786.
    (56) Jiang, C. H.; Wei, M. D.; Qi, Z. M.; Kudo, T.; Honma, I.; Zhou, H. S. Journal of Power Sources 2007, 166, 239.
    (57) Lin, Y. S.; Duh, J. G.; Hung, M. H. Journal of Physical Chemistry C 2010, 114, 13136.
    (58) Wagemaker, M.; Borghols, W. J. H.; Mulder, F. M. Journal of the American Chemical Society 2007, 129, 4323.
    (59) Guo, Y. G.; Hu, J. S.; Wan, L. J. Advanced Materials 2008, 20, 4384.
    (60) Borghols, W. J. H.; Lutzenkirchen-Hecht, D.; Haake, U.; Chan, W.; Lafont, U.; Kelder, E. M.; van Eck, E. R. H.; Kentgens, A. P. M.; Mulder, F. M.; Wagemaker, M. Journal of the Electrochemical Society 2010, 157, A582.
    (61) Reddy, M. A.; Kishore, M. S.; Pralong, V.; Varadaraju, U. V.; Raveau, B. Electrochemical and Solid State Letters 2007, 10, A29.
    (62) Kuhn, A.; Amandi, R.; Garcia-Alvarado, F. Journal of Power Sources 2001, 92, 221.
    (63) Wagemaker, M.; Simon, D. R.; Kelder, E. M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Lutzenkirchen-Hecht, D.; Frahm, R.; Mulder, F. M. Advanced Materials 2006, 18, 3169.
    (64) Hewston, T. A.; Chamberland, B. L. Journal of Physics and Chemistry of Solids 1987, 48, 97.
    (65) Sodergren, S.; Siegbahn, H.; Rensmo, H.; Lindstrom, H.; Hagfeldt, A.; Lindquist, S. E. Journal of Physical Chemistry B 1997, 101, 3087.
    (66) Henningsson, A.; Rensmo, H.; Sandell, A.; Siegbahn, H.; Sodergren, S.; Lindstrom, H.; Hagfeldt, A. Journal of Chemical Physics 2003, 118, 5607.
    (67) Stashans, A.; Lunell, S.; Bergstrom, R.; Hagfeldt, A.; Lindquist, S. E. Physical Review B 1996, 53, 159.
    (68) Olson, C. L.; Nelson, J.; Islam, M. S. Journal of Physical Chemistry B 2006, 110, 9995.
    (69) Mackrodt, W. C. Journal of Solid State Chemistry 1999, 142, 428.
    (70) Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W. Physical Review B 2002, 65.
    (71) Prakash, A. S.; Manikandan, P.; Ramesha, K.; Sathiya, M.; Tarascon, J. M.; Shukla, A. K. Chemistry of Materials 2010, 22, 2857.
    (72) Prosini, P. P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P. Solid State Ionics 2001, 144, 185.
    (73) Robertson, A. D.; Trevino, L.; Tukamoto, H.; Irvine, J. T. S. Journal of Power Sources 1999, 81, 352.
    (74) Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W. Physical Review Letters 2001, 86, 1275.
    (75) Lutzenkirchen-Hecht, D.; Wagemaker, M.; Keil, P.; van Well, A. A.; Frahm, R. Surface Science 2003, 538, 10.
    (76) Ohzuku, T.; Takehara, Z.; Yoshizawa, S. Electrochim. Acta 1979, 24, 219.
    (77) Takai, S.; Kamata, M.; Fujine, S.; Yoneda, K.; Kanda, K.; Esaka, T. Solid State Ionics 1999, 123, 165.
    (78) Qiao, H.; Wang, Y.; Xiao, L.; Zhang, L. Electrochemistry Communications 2008, 10, 1280.
    (79) Li, J. R.; Tang, Z. L.; Zhang, Z. T. Electrochemical and Solid State Letters 2005, 8, A316.
    (80) Murphy, D. W.; Cava, R. J.; Zahurak, S. M.; Santoro, A. Solid State Ionics 1983, 9-10, 413.
    (81) van de Krol, R.; Goossens, A.; Meulenkamp, E. A. Journal of the Electrochemical Society 1999, 146, 3150.
    (82) Wagemaker, M.; van de Krol, R.; Kentgens, A. P. M.; van Well, A. A.; Mulder, F. M. Journal of the American Chemical Society 2001, 123, 11454.
    (83) Subramanian, V.; Karki, A.; Gnanasekar, K. I.; Eddy, F. P.; Rambabu, B. Journal of Power Sources 2006, 159, 186.
    (84) Shin, J.-Y.; Samuelis, D.; Maier, J. Advanced Functional Materials 2011, 21, 3464.
    (85) Wang, J.; Zhou, Y.; Hu, Y.; O'Hayre, R.; Shao, Z. Journal of Physical Chemistry C 2011, 115, 2529.
    (86) Zukalova, M.; Kalbac, M.; Kavan, L.; Exnar, I.; Graetzel, M. Chemistry of Materials 2005, 17, 1248.
    (87) Li, Q.; Zhang, J.; Liu, B.; Li, M.; Liu, R.; Li, X.; Ma, H.; Yu, S.; Wang, L.; Zou, Y.; Li, Z.; Zou, B.; Cui, T.; Zou, G. Inorganic Chemistry 2008, 47, 9870.
    (88) Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G. Chemical Communications 2005, 2454.
    (89) Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G. Electrochemical and Solid State Letters 2006, 9, A139.
    (90) Jang, H.; Suzuki, S.; Miyayama, M. Journal of Power Sources 2012, 203, 97.
    (91) Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Angewandte Chemie-International Edition 2012, 51, 2164.
    (92) Reddy, M. A.; Pralong, V.; Varadaraju, U. V.; Raveau, B. Electrochemical and Solid State Letters 2008, 11, A132.
    (93) Reddy, M. A.; Kishore, M. S.; Pralong, V.; Caignaert, V.; Varadaraju, U. V.; Raveau, B. Electrochemistry Communications 2006, 8, 1299.
    (94) Dambournet, D.; Belharouak, I.; Amine, K. Chemistry of Materials 2010, 22, 1173.
    (95) Hibino, M.; Abe, K.; Mochizuki, M.; Miyayama, M. Journal of Power Sources 2004, 126, 139.
    (96) Noailles, L. D.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M. Journal of Power Sources 1999, 81, 259.
    (97) Borghols, W. J. H.; Luetzenkirchen-Hecht, D.; Haake, U.; Chan, W.; Lafont, U.; Kelder, E. M.; van Eck, E. R. H.; Kentgens, A. P. M.; Mulder, F. M.; Wagemaker, M. Journal of the Electrochemical Society 2010, 157, A582.
    (98) Das, S. K.; Darmakolla, S.; Bhattacharyya, A. J. Journal of Materials Chemistry 2010, 20, 1600.
    (99) Ishii, Y.; Kanamori, Y.; Kawashita, T.; Mukhopadhyay, I.; Kawasaki, S. Journal of Physics and Chemistry of Solids 2010, 71, 511.
    (100) Yude Wang, B. M. S., and Igor Djerdj Chemistry of Materials 2010, 22, 6624.
    (101) Cao, F.-F.; Wu, X.-L.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Journal of Physical Chemistry C 2010, 114, 10308.
    (102) Guo, Y.-G.; Hu, Y.-S.; Sigle, W.; Maier, J. Advanced Materials 2007, 19, 2087.
    (103) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H.-M. Advanced Functional Materials 2011, 21, 1717.
    (104) Lee, D.-H.; Park, J.-G.; Choi, K. J.; Choi, H.-J.; Kim, D.-W. European Journal of Inorganic Chemistry 2008, 878.
    (105) Das, S. K.; Bhattacharyya, A. J. Journal of Physical Chemistry C 2009, 113, 17367.
    (106) Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W. Journal of Materials Chemistry 2011, 21, 5687.
    (107) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
    (108) Lu, F.; Cai, W. P.; Zhang, Y. G. Advanced Functional Materials 2008, 18, 1047.
    (109) Ohno, T.; Tsubota, T.; Toyofuku, M.; Inaba, R. Catalysis Letters 2004, 98, 255.
    (110) Xing, M. Y.; Zhang, J. L.; Chen, F.; Tian, B. Z. Chemical Communications 2011, 47, 4947.
    (111) Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. Journal of the American Chemical Society 2007, 129, 8406.
    (112) Shao, W.; Gu, F.; Gai, L.; Li, C. Chemical Communications 2011, 47, 5046.
    (113) Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Chemistry of Materials 2010, 22, 3843.
    (114) Huang, H. J.; Li, D. Z.; Lin, Q.; Zhang, W. J.; Shao, Y.; Chen, Y. B.; Sun, M.; Fu, X. Z. Environmental Science & Technology 2009, 43, 4164.
    (115) Ding, Z.; Lu, G. Q.; Greenfield, P. F. Journal of Physical Chemistry B 2000, 104, 4815.
    (116) Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K. Journal of Physical Chemistry C 2008, 112, 3083.
    (117) Ke, T. Y.; Lee, C. Y.; Chiu, H. T. Applied Catalysis a-General 2010, 381, 109.
    (118) Chen, J. J.; Wu, J. C. S.; Wu, P. C.; Tsai, D. P. Journal of Physical Chemistry C 2011, 115, 210.
    (119) Li, G. H.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Journal of Catalysis 2008, 253, 105.
    (120) McDowell, J. J.; McKelvey, J. I.; Richard, L. A.; Banks, J. T. Canadian Journal of Chemistry-Revue Canadienne De Chimie 2008, 86, 703.
    (121) Du, G. H.; Chen, Q.; Han, P. D.; Yu, Y.; Peng, L. M. Physical Review B 2003, 67.
    (122) Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H. Journal of Materials Science 2004, 39, 4239.
    (123) Deacon, G. B.; Phillips, R. J. Coordination Chemistry Reviews 1980, 33, 227.
    (124) Doeuff, S.; Dromzee, Y.; Taulelle, F.; Sanchez, C. Inorganic Chemistry 1989, 28, 4439.
    (125) Herman, R. C.; Hofstadter, R. Journal of Chemical Physics 1938, 6, 534.
    (126) Liao, L. F.; Lien, C. F.; Lin, J. L. Physical Chemistry Chemical Physics 2001, 3, 3831.
    (127) Morgado, E.; de Abreu, M. A. S.; Moure, G. T.; Marinkovic, B. A.; Jardim, P. M.; Araujo, A. S. Chemistry of Materials 2007, 19, 665.
    (128) Sauvet, A. L.; Baliteau, S.; Lopez, C.; Fabry, P. Journal of Solid State Chemistry 2004, 177, 4508.
    (129) Judd, M. D.; Plunkett, B. A.; Pope, M. I. Journal of Thermal Analysis 1974, 6, 555.
    (130) Kavan, L.; Rathousky, J.; Gratzel, M.; Shklover, V.; Zukal, A. Journal of Physical Chemistry B 2000, 104, 12012.
    (131) Beuvier, T.; Richard-Plouet, M.; Brohan, L. Journal of Physical Chemistry C 2009, 113, 13703.
    (132) Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Journal of Catalysis 2001, 203, 82.
    (133) Hirakawa, T.; Yawata, K.; Nosaka, Y. Applied Catalysis a-General 2007, 325, 105.
    (134) Sun, B.; Smirniotis, P. G. Catalysis Today 2003, 88, 49.
    (135) Indris, S.; Amade, R.; Heitjans, P.; Finger, M.; Haeger, A.; Hesse, D.; Grunert, W.; Borger, A.; Becker, K. D. Journal of Physical Chemistry B 2005, 109, 23274.
    (136) Macdonald, I. R.; Rhydderch, S.; Holt, E.; Grant, N.; Storey, J. M. D.; Howe, R. F. Catalysis Today 2012, 182, 39.
    (137) Micic, O. I.; Zhang, Y. N.; Cromack, K. R.; Trifunac, A. D.; Thurnauer, M. C. Journal of Physical Chemistry 1993, 97, 7277.
    (138) Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Journal of Physical Chemistry B 2003, 107, 4545.
    (139) Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Journal of Physical Chemistry B 2005, 109, 977.
    (140) Lazzeri, M.; Vittadini, A.; Selloni, A. Physical Review B 2002, 65.
    (141) Lazzeri, M.; Vittadini, A.; Selloni, A. Physical Review B 2001, 63.
    (142) Diebold, U.; Ruzycki, N.; Herman, G. S.; Selloni, A. Catalysis Today 2003, 85, 93.
    (143) Yin, Y.; Alivisatos, A. P. Nature 2005, 437, 664.
    (144) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638.
    (145) Diebold, U. Surface Science Reports 2003, 48, 53.
    (146) Barnard, A. S.; Curtiss, L. A. Nano Letters 2005, 5, 1261.
    (147) Herzberg, K. P. H. a. G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules Van Nostrand Reinhold: New York, 1979.
    (148) Selloni, A. Nature Materials 2008, 7, 613.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE