研究生: |
陳清源 Ching-Yuan Chen |
---|---|
論文名稱: |
二次離子質譜術分析技術研發與新型陽離子高分子基因載體研究 Development of SIMS Analytical Techniques and Study of Non-Viral Gene Delivery-Cationic Polymer for DNA and siRNA Delivery |
指導教授: |
凌永健
Yong-Chien Ling |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 二次離子質譜術 、導電高分子 、陽離子型高分子 、血袋 、鄰苯二甲酸酯 |
外文關鍵詞: | SIMS, gene delivery, conducting polymer, polycationic polymer, blood bag, DEHP, siRNA, RNA interference, PPy(DBS) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛行時間二次離子質譜術TOF-SIMS(Time of Flight-Secondary Ion Mass Spectrometry),具有同時分析微量有機分子與無機元素的能力,質量分析範圍可從氫原子到分子量上萬的合成高分子與天然物分子,質量解析能力(M/□M)可達10000以上,具高靈敏度(一般元素在ppma~ppba範圍),可藉由調整一次離子強度分析固態樣品表面單一層原子或分子,以Ga+液態金屬離子槍可做化學離子影像分析,解析可達100nm以下,具縱深分析與次微米微區分析能力,其研究範圍涵蓋微電子技術、奈米科技、合成高分子、生命科技材料、環境分析、醫藥技術與臨床分析等,是具有同時提供樣品多項資訊的多功能分析儀器。
在第二章中,利用新竹科學園區五部SIMS分析銅膜中佈植的碳、硫及氯之標準品,並進行實驗室間的比對實驗,結果得到相近的最高濃度位置,但不同SIMS機台所測得定量所需的相對感應因(RSF)值,隨不同機台有相當大的差異,扇行磁場式較四極柱式有較低的偵測極限。在第三章中,以飛行時間式二次離子質譜儀快速分析血袋中的DEHP — bis(2-ethylhexyl) phthalate和擴散到儲存的血液中的現象。從質譜圖中可測得DEHP的分子離子及碎片離子。第四章中,利用電化學鍍膜的方法將Biotin 生化分子固定到導電高分子(Polypyrrole)中,由螢光顯微鏡所得結果看到Biotin 分子可被固化入導電高分子(polypyrrole)中,由飛行時間式二次離子質譜儀所得表面影像,可觀察到Biotin 分子及其碎裂離子。由Biotin裂解實驗中,在4oC下 Biotin 可穩定存在於(Polypyrrole)中持續14天以上。在第五章中,利用合成的4種陽離子型高分子做為基因傳遞的載體,在細胞實驗中呈現很好的基因傳遞作用,高於市售Lipofactamin 2000。在低的高分子載體的使用量下,對細胞的毒性在可接收範圍內。在第六章中,我們利用TOF-SIMS 分析導電高分子(Polypyrrole)分析在電化學鍍膜時進入的陽離子鈉與陰離子DBS(dodecylbenzene sulfonate)的含量,探討其與導電度的關係,並以電子顯微鏡(FE-SEM)觀察表面形貌與導電度的關係。
Abstract
Time-of-flight secondary ion mass spectrometer (TOF-SIMS) is capable of simultaneously analyzing trace organic molecules and inorganic elements in mass ranging from hydrogen atom to synthetic and natural polymers with molecular weight up to ten thousands and more. TOF-SIMS could distinguish analytes with mass resolution different by 10000 at ppma to ppba sensitivity. Top monolayer atomic or molecular information could be determined by adjusting primary ion current density. Chemical images with lateral resolution 100 nm or less can be obtained by using Ga+ ion gun. The nm-scale depth profile and sub-□m area analysis capabilities inherent in TOF-SIMS extend its applicability to broad fields such as microelectronics, nano-technology, polymer science, life science technology, environmental analysis, \medical technology and clinical diagnostics. TOF-SIMS could simultaneously provide critical chemical information and is a multi functional state-of-the-art instrument.
In chapter 2, the round robin study of reference standards of Cl, S and C implanted into Cu films with known energy and dosage using five SIMS instruments was attempted in this work. Quantifying these impurities and comparing the results in terms of relative sensitivity factor (RSF) was the objective to check the discrepancy in results. Significant differences in RSFs but similarity in maximum peak concentration among different instruments was observed. Each sample was tested for the background level of C, O, S and Cl before being ion-implanted. The extent of uncertainty due to sample inhomogeneities was estimated using analytical results from a single instrument run by an operator. Relative standard deviations (RSDs) of maximum peak concentration 5.5 % and of peak position for Cl (1x1015 ions/cm2) were obtained, respectively. The detection limit and dynamic range were estimated from the depth profiles.
In chapter 3, use of TOF-SIMS to analyze plasticiser like bis(2-ethylhexyl) phthalate (DEHP) from the inner surface of the blood bags and their migration into the blood is discussed. Food packing materials were also analyzed for DEHP. The simplicity of using TOF-SIMS with improved mass resolution as an aid in the identification and analysis are discussed. The TOF-SIMS results, the fragmentation pattern and the ratio of ions were comparable to those obtain from traditional GC-MS analysis, indicates that TOF-SIMS could be a promising technique for direct analysis of DEHP, and phthalates in general, in blood bags and food packagings made of polymeric materials
In chapter 4, an easy and rapid method to doped biotin into polypyrrole thin film by electro-polymerization was demonstrated. The results of fluorescence and TOF-SIMS image have an agreement with each other. Modification of Ppy/Biotin surface could be made for further application. Degradation study shows biotin doped polypyrrole was stable in the PBS solution. No significant decay was found after two week. Applying 0.5 mA constant current for 5 min for electro-polymerization could form approximately 4 μm thick polypyrrole thin film on gold electrode. Electro-polymerization at 25 oC showed higher ion intensity than 4 oC of m/z 227(532:444). It might be due to the increasing of the diffusion coefficient of biotin toward the electrode surface.
In chapter 5, four different polymers for DNA delivery and three polymers for siRNA delivery into cells were synthesized. All these four polymers for DNA delivery showed promising result compared with C32 polymer from previous screening. They also show good transfection efficiency in the presence of serum in vitro. They might have great potential to delivery gene in vivo also. siRNA delivery showed better efficiency compared with commercial transfection reagent Lipofatamine 2000. Cytotoxicity of these polymers at low concentration is acceptable. For DNA delivery, compared with viral vector, non-viral cationic polymer vectors provide a lot of advantages; most significant is safe and easy to produce. These polymers might further conjugate with functional peptides and PEG to increase their tranfection efficiency and specific cell targeting.
In chapter 6, Polypyrrole(dodecylbenzene sulfonate) (PPy(DBS)) was electro-polymerized on indium tin oxide (ITO) glass using different concentration of sodium dodecylbenzene sulfonate (NaDBS) ranging from 0.002M to 0.2M in aqueous solution. The PPy(DBS) films were studied using time of flight secondary ion mass spectrometry (TOF-SIMS) in which the cation and anion doping concentrations were monitored on surface and along the thickness of the film. TOF-SIMS depth profiles showed interesting variations of sodium concentration along the thickness of electro-polymerized PPy(DBS) films. The morphology of the PPy(DBS) films was characterized using field emission scanning electron microscope (FE-SEM) and correlate with conductivity study.
Chpater 1
[1] Wilson, R. G.; Stevie, F. A.; Stevie, F. A. "Secondary Ion Mass Spectrometry, A practical handbook for depth profiling and bulk impurity analysis", Wiley (New York) 1989
[2] Vickerman, J. C.; Brown, A.; Reed, N. M. "Secondary Ion Mass Spectrometry, Principles and Applications", Oxford 1989
[3] Touboul, D.; Halgand, F.; Brunelle, A.; Kersting, R.; Tallarek, E. H.; Birgit; L. "Tissue molecular ion imaging by gold cluster ion bombardment." Analytical Chemistry 2004, 76, 1550-1559
[4] Stephan, T. "TOF-SIMS in cosmochemistry." Planetary and Space Science 2001, 49, 859-906
[5] Niehuis, E.; Grehl, T. "Dual beam SIMS depth profiling", Proceedings of the International Conference on . SIMS XII, Brussels, Belgium, 1999, 49-54
[6] Rostam-Khani, P.; Hopstaken, M. J. P.; Vullings, P.; Noij, G.; O'Halloran, O.; Claassen, W. "Quantification issues of trace metal contaminants on silicon wafers by means of TOF-SIMS, ICP-MS, and TXRF." Applied Surface Science 2004, 231-232, 720-724
[7] Belu, A. M.; Yang, Z. P.; Aslami, R.; Chilkoti, A. "Enhanced TOF-SIMS imaging of a micropatterned protein by stable isotope protein labeling." Analytical Chemistry 2001, 73, 143-150
[8] John, C. M.; Odom, R. W.; Salvati, L.; Annapragada, A.; Lu, M. Y. "XPS and TOF-SIMS Microanalysis of a Peptide/Polymer Drug Delivery Device." Analytical Chemistry 1995, 67, 3871-3878
[9] Belu, A. M.; Davies, M. C.; Newton, J. M.; Patel, N. "TOF-SIMS Characterization and Imaging of Controlled-Release Drug Delivery Systems." Analytical Chemistry 2000, 72, 5625-5638
[10] Cliff, B.; Lockyer, N. P.; Corlett, C.; Vickerman, J. C. "Development of instrumentation for routine ToF-SIMS imaging analysis of biological material." Applied Surface Science 2003, 203-204, 730-733
[11] Sjoevall, P.; Lausmaa, J.; Johansson, B. "Mass Spectrometric Imaging of Lipids in Brain Tissue", Analytical Chemistry 2004, 76, 4271-4278
[12] Ausserer, W. A.; Ling, Y. C.; Chandra, S.; Morrison, G. H. "Quantitative imaging of boron, calcium, magnesium, potassium, and sodium distributions in cultured cells with ion microscopy." Analytical Chemistry 1989, 61, 2690-2695
[13] Chandra, S.; Ausserer, W. A.; Morrison, G. H. "Subcellular imaging of calcium exchange in cultured cells with ion microscopy." Journal of Cell Science 1992, 123, 417-425
[14] Chandra, S.; Smith, D. R.; Morrison, G. H. "Subcellular imaging by dynamic SIMS ion microscopy: by imaging isotopes, the transport of ions, molecules, and therapeutic drugs can be studied in single cells." Analytical Chemistry 2000, 72, 104A-114A
[15] Colliver, T. L.; Brummel, C. L.; Pacholski, M. L.; Swanek, F. D.; Ewing, A. G.; Winograd, N. "Atomic and Molecular Imaging at the Single-Cell Level with TOF-SIMS." Analytical Chemistry 1997, 69, 2225-2231
[16] Roddy, T. P.; Cannon, D. M., Jr.;; Meserole, C. A.; Winograd, N.; Ewing, A. G. "Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry." Analytical Chemistry 2002, 74, 4011-4019
[17] Cannon, D. M., Jr.; ; Pacholski, M. L.; Winograd, N.; Ewing, A. G. "Molecule Specific Imaging of Freeze-Fractured, Frozen-Hydrated Model Membrane Systems Using Mass Spectrometry." Journal of the American Chemical Society 2000 2000, 122, 603-610
[18] Sjoevall, P.; Lausmaa, J.; Nygren, H.; Carlsson, L.; Malmberg, P. "Imaging of Membrane Lipids in Single Cells by Imprint-Imaging Time-of-Flight Secondary Ion Mass Spectrometry." Analytical Chemistry 2003, 75, 3429-3434
[19] http://www.ion-tof.com/,
[20] Benninghoven, A. "Chemical analysis of inorganic and organic surfaces and thin films using time-of-flight secondary ion mass spectrometry (TOF-SIMS)." Angew. Chem., Int. Ed. Engl. 1994, 33, 1023-1043
[21] Schnieders, A.; Moellers, R.; Terhorst, M.; Cramer, H.-G.; Niehuis, E.; Benninghoven, A. "A. Quantification of metal trace contaminants on Si wafer surfaces by laser-SNMS and TOF-SIMS using sputter deposited submonolayer standards." Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures 1996, 14, 2712-2724
[22] Cameca / Ion-TOF User's Guide p2-23~2-25
[23] "Cameca TOF-SIMS IV Technical Note-Depth Profile Document TN 9609B".
Chapter 2
[1] "http://www.novellus.com/damascus/damascus.asp",
[2] Filippi, R. G.; Gribelyuk, M. A.; Joseph, T. K. "Electromigration in AlCu lines: comparison of Dual Damascene and metal reactive ion etching." Thin Solid Films 2001, 388, 303-314
[3] Hu, C.-K.; Gignac, L.; Liniger, E.; Herbst, B.; Rath, D. L.; Chen, S. T.; Kaldor, S.; Simon, A.; Tseng, W.-T. "Comparison of Cu electromigration lifetime in Cu interconnects coated with various caps." Applied Physics Letters 2003, 83, 869-871
[4] Voss, S.; Gandikota, S.; Chen, L.-Y.; Tao, R.; Cong, D.; Duboust, A.; Yoshida, N. "Chemical studies of CVD Cu deposited on Ta and TaN barriers under various process condition", Microelectronic Eng. 2000, 50, 501-508
[5] Weiss, K.; Riedel, S.; Schulz, S. E.; Schwerd, M.; Helneder, H.; Wendt, H.; Gessner, T. "Development of different copper seed layers with respect to the copper electroplating process", Microelectronic Eng. 2000, 50, 433-440
[6] Lysaght, P. S.; West, M. "Addressing Cu contamination via spin-etch cleaning." Solid State Technology 1999, 42, 63-64,66,68,70
[7] Dornisch, D.; Li, G.; Brongo, M. "Cu contamination control for advanced interconnect manufacturing." Solid State Technology 2000, 43, 137-138,140,142,145
[8] Ho, K. J.; Hwang, J. F.; Wang, C. C.; Chang, H. C.; Ling, Y. C. in Secondary ion mass spectrometry (SIMS IX); John Wiley & Sons;New York, 1994.170-173.
[9] Hong, S. Y.; Hong, T. E.; Lee, J. P.; Yoon, M. N.; Min, K.; Lee, S. Y. in Secondary ion mass spectrometry (SIMS XII); Elsevier;New York, 2000.385-388.
[10] Simons, D. in Secondary ion mass spectrometry (SIMS IX); John Wiley & Sons;New York, 1994.140-145.
Chpater 3
[1] Rhodes, C.; Orton, T. C.; Pratt, I. S.; Batten, P. L.; Bratt, H.; Jackson, S. J.; Elcombe, R., Environ. Health Perspect 1986, 65, 299
[2] U.S. EPA. Maximum Contamination Levels (MCLs) for the Regulated Safe Drinking Water Act (SDWA) Compounds. 40CFR Part 141.
[3] ASTM F963-96. Standard consumer safety specification on toy safety. American Society for Testing and Materials 1986
[4] Petersen, J. H.; Breindahl, T. "Plasticizers in total diet samples, baby food and infant formulae", Food additives and contaminants 2000 Feb, 17, 133-141
[5] Tomiyasu, B.; Hoshi, T.; Owari, M.; Nihei, Y. "TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles", Applied Surface Science 2003, 203, 775
[6] Castle, L.; Mercer, A. J.; Gilbert , J. "Migration from plasticized films into foods. 5. Identification of individual species in a polymeric plasticizer and their migration into foods." Food additives and contaminants 1991 Sep-Oct, 8, 565-576
[7] Kim, J. H.; Kim, S. H.; Lee, C. H.; Nah, J. W.; Hahn, A. "DEHP Migration Behavior from Excessively Plasticized PVC Sheets", Bull. Korean Chem. Soc. 2003, 24, 345
[8] Petersen, J. H.; Lillemark, L.; Lund, L. "Migration from PVC cling films compared with their field of application." Food additives and contaminants 1997 May-Jun, 14, 345-353
[9] Petersen, J. H. "Survey of di-(2-ethylhexyl)phthalate plasticizer contamination of retail Danish milks." Food additives and contaminants 1991 Nov-Dec, 8, 701-705
[10] Page, B. D.; Lacroix, G. M. "Studies into the transfer and migration of phthalate esters from aluminium foil-paper laminates to butter and margarine." Food additives and contaminants 1992 May-Jun, 9, 197-212
[11] Lau, O. W.; Wong, S. K. "Contamination in food from packaging material", ournal of Chromatography, A, 2000, 882, 255-270
[12] Benninghoven, A. "Chemical analysis of inorganic and organic surfaces and thin films using time-of-flight secondary ion mass spectrometry (TOF-SIMS)", Angew. Chem., Int. Ed. Engl. 1994, 33, 1023-1043
[13] http://www.greenpeaceusa.org/
Chpater 4
[1] Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x", Journal of the Chemical Society, Chemical Communications, 1977, 16, 578-580.
[2] Brahim, S.; Narinesingh, D.; Guiseppi-Elie, A. "Polypyrrole-hydrogel composites for the construction of clinically important biosensors", Biosensors & Bioelectronics 2002, 17, 53-39.
[3] Dupont-Filliard, A.; Billon, M.; Bidan, G.; Guillerez, S. "Investigation by QCM of the specific and nonspecific avidin interaction onto a biotinylated polypyrrole film." Electroanalysis 2004, 16, 667-673.
[4] Cosnier, S.; Perrot, H.; Wessel, R. "Biotinylated polypyrrole modified quartz crystal microbalance for the fast and reagentless determination of avidin concentration." Electroanalysis 2001, 13, 971-974.
[5] Suematsu, S.; Oura, Y.; Tsujimoto, H.; Kanno, H.; Naoi, K. "Conducting polymer films of cross-linked structure and their QCM analysis", Electrochimica Acta 2000, 45, 3813-3821.
[6] Syritski, V.; Reut, J.; Opik, A.; Idla, K. "Environmental QCM sensors coated with polypyrrole." Synthetic Metals 1999, 102, 1326-1327.
[7] Yu, J. C. C.; Lai, E. P. C. "Polypyrrole film on miniaturized surface plasmon resonance sensor for ochratoxin A detection." Synthetic Metals 2004, 143, 253-258.
[8] Marks, R. S.; Novoa, A.; Thomassey, D.; Cosnier, S. "An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly(pyrrole-biotin)." Analytical and Bioanalytical Chemistry 2002, 374, 1056-1063.
[9] Ferloni, P.; Mastragostino, M.; Meneghello, L. "Impedance analysis of electronically conducting polymers." Electrochimica Acta 1996, 41, 27-33.
[10] Haddour, N.; Cosnier, S.; Gondran, C. "Electrogeneration of a biotinylated poly(pyrrole-ruthenium(ii)) film for the construction of photoelectrochemical immunosensor." Chemical Communications (Cambridge, United Kingdom) 2004, 21.
[11] Da Silva.; Grosjean, L.; Ternan, N.; Mailley, P.; Livache, T.; Cosnier, S. "Biotinylated polypyrrole films: an easy electrochemical approach for the reagentless immobilization of bacteria on electrode surfaces." Bioelectrochemistry 2004, 63, 297-301.
[12] Cosnier, S.; Gondran, C.; Le Pellec, A.; Senillou, A. "Controlled fabrication of glucose and catechol microbiosensors via electropolymerized biotinylated polypyrrole films." Analytical Letters 2001, 34, 61-70.
[13] Schlenoff, J. B.; Xu, H. "Evolution of physical and electrochemical properties of polypyrrole during extended oxidation." Journal of the Electrochemical Society 1992, 139, 2397-2401.
[14] Rivers, T. J.; Hudson, T. W.; Schmidt, C. E. "Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications." Advanced Functional Materials 2002, 12, 33-37.
[15] Zelikin, A. N.; Lynn, D. M.; Farhadi, J.; Martin, I.; Shastri, V.; Langer, R. "Erodible conducting polymers for potential biomedical applications." Angewandte Chemie, International Edition 2002, 41, 141-144.
[16] Cui, X.; Wiler, J.; Dzaman, M.; Altschuler, R. A.; Martin, D. C. "In vivo studies of polypyrrole/peptide coated neural probes." Biomaterials 2003, 24, 777-787.
[17] Politis, M. J.; Zanakis, M. F. "The short-term effects of delayed application of electric fields in the damaged rodent spinal cord." Neurosurgery 1989, 25, 71-75.
[18] Schmidt, C. E.; Shastri, V. R.; Vacanti, J. P.; Langer, R. "Stimulation of neurite outgrowth using an electrically conducting polymer." Proceedings of the National Academy of Sciences of the United States of America 1997, 94, 8948-8957.
[19] Collier, J. H.; Camp, J. P.; Terry, W.; Schmidt, C. E. "Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications", Journal of Biomedical Materials Research 2000, 50, 574-584.
[20] Doblhofer, K.; Rajeshwar, K. "Handbook of Conducting Polymers,2nd Edn." ed. T. A. Skotheim, R. L. Elsenbaumer and J. R. Reynolds,Marcel Dekker, New York, 1998, 1, 531.
[21] Sabouraud, G.; Sadki, S.; Brodie, N. "The mechanisms of pyrrole electropolymerization." Chemical Society Reviews 2000, 29, 283-293.
Chapter 5
[1] "http://www.wiley.co.uk/genmed/clinical/",
[2] Roy-Chowdhury, J.; Horwitz, M. S. "Evolution of adenoviruses as gene therapy vectors", Mol. Therapy 2002, 5, 340-344
[3] Somia, N.; Verma, I. M. "Gene therapy: trials and tribulations", Nat. Rev. Genetics 2000, 91-99
[4] Fox, J. L. "US authorities uphold suspension of SCID gene therapy", Nat. Biotechnol. 2003, 21, 217
[5] Fox, J. L. "US panel advises resumption of gene trials", Nat. Biotechnol. 2002, 20, 1068-1069
[6] Ruponen, M.; Honkakoski, P.; Ronkko, S.; Pelkonen, J.; Tammi, M.; Urtti, A. "Extracellular and intracellular barriers in non-viral gene delivery", Journal of Controlled Release 2003, 93, 213-217
[7] Kresina, T. F. "An introduction to molecular medicine and gene p.16 therapy"; New York :Wiley-Liss,c2001., 2001.
[8] Barquinero, J.; Eixarch, H.; Perez-Melgosa, M. "Retroviral vectors: new applications for an old tool." Gene Therapy 2004, 11, S3-S9
[9] Byun, J.; Kim, S. H.; Kim, J. M.; Yu, S. S.; Robbins, P. D.; Yim, J.; Kim, S. "Analysis of the relative level of gene expression from different retroviral vectors used for gene therapy", Gene Therapy 1996, 3, 780-788
[10] Haviernik, P.; Bunting, K. D. "Safety concerns related to hematopoietic stem cell gene transfer using retroviral vectors", Current Gene Therapy 2004, 4, 263-276
[11] Liu, X. D.; Ma, S. M.; Liu, Y.; Liu, S. Z.; Sehon, A. "Short hairpin RNA and retroviral vector-mediated silencing of p53 in mammalian cells", Biochemical and Biophysical Research Communications 2004, 324, 1173-1178
[12] Cannon, P. M.; Anderson, W. F. "Retroviral vectors for gene therapy." Gene and Cell Therapy (2nd Edition) 2004, 1-16
[13] Chen, P.; Kovesdi, I.; Bruder, J. T. "Effective repeat administration with adenovirus vectors to the muscle." Gene Therapy 2000, 7, 587-595
[14] Schmidt-Wolf, G. D.; Schmidt-Wolf, I. G. H. "Non-viral and hybrid vectors in human gene therapy: an update." Trends in Molecular Medicine 2003, 9, 67-72
[15] Segura, T.; Shea, L. D. "Materials for non-viral gene delivery", Annual Review of Materials Research 2001, 31, 25-46
[16] Pouton, C. W.; Seymour, L. W. "Key issues in non-viral gene delivery", Advanced Drug Delivery Reviews 2001, 46, 187-203
[17] Seville, P. C.; Harris, N. C.; Juggins, E. C.; Young, J. M.; Birchall, J. C.; Kellaway, I. W. "Characterisation of non-viral gene delivery vectors for pulmonary administration", Journal of Controlled Release 2003, 87, 288-291
[18] Seville, P. C.; Birchall, J. C.; Kellaway, I. W. "Stability, deposition and biological functionality of non-viral gene delivery vectors for pulmonary administration", Journal of Controlled Release 2003, 87, 291-293
[19] Pedroso de Lima, M. C.; Neves, S.; Filipe, A.; Duzgunes, N.; Simoes, S. " Cationic liposomes for gene delivery: From biophysics to biological applications." Current Medicinal Chemistry 2003, 10, 1221
[20] L;, F. P.; R;, G. T.; M;, H.; R;, R.; W;, C. H.; M;, W.; P;, N. J.; M;, R. G.; M, D. " Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure." Proceedings of the National Academy of Sciences of the United States of America 1987, 84, 7413-7417
[21] Cho, Y. W.; Kim, J. D.; Park, K. "Pollycation gene delivery systems: escape from endosomes to cytosol", Journal of Pharmacy and Pharmacology 2003, 55, 721-734
[22] Mishra, S.; Webste, r. P.; Davis, M. E. "PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles." European Journal of Cell Biology 2004, 83, 97-111
[23] Ogris, M.; Brunner, S.; Schuller, S.; Kircheis, R.; Wagner, E. "PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery." Gene Therapy 1999, 6, 595-605
[24] Katayose, S.; Kataoka, K. "Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer." Bioconjugate Chemistry 1997, 8, 702
[25] Langosch, D. "De novo design of conformationally flexible transmembrane peptides driving membrane fusion." Proceedings of the National Academy of Sciences of the United States of America 2004, 10, 14776-14781
[26] Nomura, F.; Inaba, T.; Ishikawa, S.; Nagata, M.; Takahashi, S.; Hotani, H.; Takiguchi, K. "Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion." Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 3420-3425
[27] Lee, H.; Jeong, J. H.; Park, T. G. "A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide." Journal of Controlled Release 2001, 76, 183-192
[28] Akinc, A.; Anderson, D. G.; Lynn, D. M.; Langer, R. "Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery", Bioconjugate Chemistry 2003, 14, 979-988
[29] Akinc, A.; Lynn, D. M.; Anderson, D. G.; Langer, R. "Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery", Journal of the American Chemical Society 2003, 125, 5316-5323
[30] Anderson, D. G.; Lynn, D. M.; Langer, R. "Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery", Angewandte Chemie-International Edition 2003, 42, 3153-3158
[31] Anderson, D. G.; Peng, W. D.; Akinc, A.; Hossain, N.; Kohn, A.; Padera, R.; Langer, R.; Sawicki, J. A. "A polymer library approach to suicide gene therapy for cancer", Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 16028-16033
[32] Lynn, D. M.; Langer, R. "Degradable poly(beta-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA", Journal of the American Chemical Society 2000, 122, 10761-10768
[33] Lynn, D. M.; Anderson, D. G.; Putnam, D.; Langer, R. "Accelerated discovery of synthetic transfection vectors: Parallel synthesis and screening of degradable polymer library", Journal of the American Chemical Society 2001, 123, 8155-8156
[34] Fire, A.; Xu, S.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans." Nature 1998, 391, 806-811
[35] Novina, C. D.; Sharp, P. A. "The RNAi revolution." Nature 2004, 430, 161-164
[36] Soutschek, J.; Akinc, A.; Bramlage, B.; Charisse, K. "Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs." Nature 2004, 432, 173-178
[37] Dykxhoorn, D. M.; Novina, C. D.; Sharp, P. A. "Killing the messenger: short RNAs that silence gene expression." Nature Reviews Molecular Cell Biology 2003, 4, 457-467
[38] Akinc, A. "Investigation of barriers to non-viral gene delivery and design of novel polymer-based gene delivery systems." Massachusetts Institute of Technology, Dept. of Chemical Engineering, PhD. Thesis, 2003.p.19.
[39] Huang, L.; Hung, M.-c.; Wagner, E. "Nonviral vectors for gene therapy." San Diego, Calif. : Academic Press,, 1999.
Chapter 6
[1] Burroughes, J. H.; Bradley, D. D. C. "Light-emitting diodes based on conjugated polymers." Nature 1990, 347, 539
[2] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. "Electroluminescence in conjugated polymers", Nature 1999, 397, 121-128
[3] Kugler, T.; Salaneck, W. R.; Rost, H.; Holmes, A. B. "Polymer band alignment at the interface with indium tin oxide: consequences for light emitting devices", Chemical Physics Letters 1999, 310, 391-396
[4] Janata, J.; Josowicz, M. "Conducting polymers in electronic chemical sensors", Nature Materials 2003, 2, 19-24
[5] Valentini, L.; Bavastrello, V.; Stura, E.; Armentano, I.; Nicolini, C.; Kenny, J. M. "Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material", Chemical Physics Letters 2004, 383, 617-622
[6] Sabouraud, G.; Sadki, S.; Brodie, N. "The mechanisms of pyrrole electropolymerization." Chemical Society Reviews 2000, 29, 283-293
[7] Smela, E., : "A Microfabricated Movable Electrochromic "Pixel" Based on Polypyrrole", Advanced Materials 1999, 11, 1343-1345
[8] Jager, E. W. H.; Inganas, O.; Lundstrom, I. "Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation", Science 2000, 288, 2335-2338
[9] George, P. M.; Lyckman, A. W.; LaVan, D. A.; Hegde, A.; Leung, Y.; Avasare, R.; Testa, C.; Alexander, P. M.; Langer, R.; Sur, M. "Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics." Biomaterials 2005, 26, 3511-3519
[10] Sean, M.; Eisabeth, S.; Ken, Y.; Peter, S.-L.; Richard B, S. "The effects of varying deposition current denisty on bending behaviour in PPy(DBS)-actuated bending beams", Sensors and Actuators A 2001, 89, 175-184
[11] Careem, M. A.; Vidanapathirana, K. P.; Skaarup, S.; West, K. "Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved", Solid State Ionics 2004, 175, 725-728
[12] Pernaut, J.; Reynolds, J. " Use of Conducting Electroactive Polymers for Drug Delivery and Sensing of Bioactive Molecules. A Redox Chemistry Approach." Journal of Physical Chemistry B 2000, 104, 4080-4090
[13] Doblhofer, K.; Rajeshwar, K. "Handbook of Conducting Polymers,2nd Edn." ed. T. A. Skotheim, R. L. Elsenbaumer and J. R. Reynolds,Marcel Dekker, New York, 1998, 1, 531
[14] Jang, K. S.; Lee, H.; Moon, B. "Synthesis and chracterization of water soluble polypyrrole doped wuth fuctional dopants", Synthetic Metals 2004, 143, 289-294
[15] Skaarup, S.; Bay, L.; Vidanapathirana, K.; Thybo, S.; Tofte, P.; West, K. "Simultaneous anion and cation moility in polypyrrole", Solid State Ionics 2003, 159, 143-147
[16] He, C.; Yang, C.; Li, Y. "Chemical synthesis of coral-like nonowires and nonowore network of conducting polypyrrole", Synthetic Metals 2003, 139, 539-545
[17] Masuda, H.; Asano, D. K. "Preparation and properties of polypyrrole", Synthetic Metals 2003, 135, 43-44
[18] Kim, J. H.; Sung, H. K.; Yoon, C. O.; Lee, H. "Electropolymerization of polypyrrole optimized for the behavior of conductivity at low temperature", Synthetic Metals 1997, 84, 737-738
[19] Bhattacharya, A.; De, A.; Das, S. "Electrochemical preparation and study of transport properties of polypyrrole doped with unsaturated organic sulfonates", Polymer 1996, 37, 4375-4382
[20] West, K.; Bay, L.; Nielsen, M. M.; Velmurugu, Y.; Skaarup, S. "Electronic Conductivity of Polypyrrole-Dodecyl Benzene Sulfonate Complexes." Journal of Physical Chemistry B 2004, 108, 15001-15008
[21] Miles, M. J.; Smith, W. T.; Shapiro, J. S. "Morphological investigation by atomic force microscopy and light microscopy of electropolymerised polypyrrole films", Polymer 2000, 41, 3349-3356
[22] Silk, T.; Hong, Q.; Tamm, J.; Compton, R. G. "AFM studies of polypyrrole film surface morphology - I. The influence of film thickness and dopant nature", Synthetic Metals 1998, 93, 59-64
[23] Warren, L. F.; Walker, J. A.; Anderson, D. P.; Rhodes, C. G.; Buckley, L. J. "A Study of Conducting Polymer Morphology - the Effect of Dopant Anions Upon Order", Journal of the Electrochemical Society 1989, 136, 2286-2295
[24] Sin, S.-L.; Teo, L.-L.; Tan, K.-S.; Chan, C.-Y. "ESCA and TOF-SIMS study on oxidized and reduced polypyrrole-poly(4-styrene sulfonate) free-standing films synthesized on Ti electrodes." Electrochemistry Communications 2000, 2, 685-691
[25] Cairns, D. B.; Armes, S. P.; Chehimi, M. M.; Perruchot, C.; Delamar, M. "X-ray photoelectron spectroscopy characterization of submicrometer-sized polypyrrole - Polystyrene composites", Langmuir 1999, 15, 8059-8066
[26] Wagner, M. S. "Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry", Analytical Chemistry 2005, 77, 911-922
[27] Hearn, M. J.; Fletcher, I. W.; Church, S. P.; Armes, S. P. "Characterization of Polypyrrole Fiber Composites by Time-of-Flight Secondary Ion Mass-Spectrometry and Vibrational Spectroscopy", Polymer 1993, 34, 262-266
[28] Abel, M. L.; Leadley, S. R.; Brown, A. M.; Petitjean, J.; Chehimi, M. M.; Watts, J. F. "Tof-Sims Characterization of Electrochemically Synthesized Polypyrrole Films", Synthetic Metals 1994, 66, 85-88
[29] Perruchot, C.; Chehimi, M. M.; Delamar, M.; Eccles, J. A.; Steele, T. A.; Mair, C. D. "SIMS analysis of conducting polypyrrole-silica gel composites", Synthetic Metals 2000, 113, 53-63
[30] Naoi, K.; Oura, Y.; Maeda, M.; Nakamura, S. "Electrochemistry of Surfactant-Doped Polypyrrole Film(I) - Formation of Columnar Structure by Electropolymerization", Journal of the Electrochemical Society 1995, 142, 417-422
[31] Carswell, A. D. W.; O'Rear, E. A.; Grady, B. P. "Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films", Journal of the American Chemical Society 2003, 125, 14793-14800
[32] Liu, Y. C.; Huang, J. M.; Tsai, C. E.; Chuang, T. C.; Wang, C. C. "Effect of TiO2 nanoparticles on the electropolymerization of polypyrrole", Chemical Physics Letters 2004, 387, 155-159