簡易檢索 / 詳目顯示

研究生: 吳家齊
論文名稱: P3HT和P3HT/PCBM摻合物之相容性、結晶行為與形態學之研究
Investigation of the Miscibility, Crystallization, Melting, and Morphology of P3HT and P3HT/PCBM blend
指導教授: 陳信龍
口試委員: 曹正熙
蘇群仁
陳信龍
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 120
中文關鍵詞: P3HT和P3HT/PCBM摻合物之相容性、結晶行為與形態學之研究
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    近年來,高分子太陽能電池的研究開發受到極大的矚目,為能有效達到高的光電轉換效率,光吸收層材料的深入基礎研究是必須的,其中的一個重點是該薄膜層中共軛高分子的結構及共軛高分子與受體(一般為C60或C¬70為主體之材料)摻混之相容性與相分離形態學的操控。本論文針對目前最廣泛被使用之材料 poly(3-hexylthiophene) (P3HT)與PCBM所形成的摻合體相容性、結晶行為與形態學等進行系統性研究。我們將製備摻合體所使用的2 wt%溶液在室溫下靜置不同時間後再進行鑄膜,我們發現當靜置時間超過12小時,溶液會產生凝膠化現象,從SAXS、AFM等證實P3HT在凝膠化過程中形成奈米鬚結構。之後我們將靜置不同時間的溶液(或凝膠)鑄膜,探討所形成的P3HT/PCBM薄膜中兩成分的相容性及P3HT之結晶動力學等,以瞭解溶液處理條件是否會影響薄膜的形態學及結晶行為等。實驗結果發現,不管溶液是否有經過靜置,P3HT在P3HT/PCBM摻合薄膜的結晶速率皆隨著PCBM含量增加而下降,此顯示P3HT與PCBM在分子層級具有相當顯著的相容性。有趣的是,當溶液靜置時間超過一星期,在凝膠態所鑄造的薄膜中,P3HT的結晶速率比用新鮮溶液製備的膜中的結晶速率要慢許多。我們認為在凝膠態所鑄造的薄膜中,幾乎所有的P3HT都形成奈米鬚,而該奈米鬚在P3HT晶體熔點以上,仍可維持一定的穩定性,所以在降溫過程中,P3HT必須在奈米鬚所提供空間中結晶,由於該空間的尺度拘限性,加上所需的晶核密度大幅增加,所以導致結晶速率大幅下降。我們另外在SAXS圖譜中發現P3HT會呈現一個特徵尺度約4.5 nm的奈米結構,該奈米結構在80 ~ 90 oC會熔化,但降溫會再出現,顯示為一熱可逆之平衡或亞穩結構。


    目錄 摘要 I Abstract III 目錄 IV 圖目錄 VII 表目錄 X 符號對照表 XI 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池的發展簡介 3 1.3 太陽能電池基本原理 3 1.4 太陽能電池的種類 8 1.4.1 無機太陽能電池 9 1.4.1.1 矽太陽能電池 9 1.4.1.2 微晶矽太陽能電池 10 1.4.1.3 多元化合物薄膜太陽能電池 10 1.4.2 有機太陽能電池 16 1.4.2.1染料敏化太陽能電池(Dye-Sensitized Solar Cells,DSSCs) 16 1.4.2.2小分子有機太陽能電池(Molecular Solar Cells) 18 1.4.2.3高分子有機太陽能電池(Polymer Solar Cells) 19 1.5 文獻回顧 25 1.5.1 聚合物 25 1.5.2 聚合物型態 25 1.5.4 結晶性聚合體之形態學及規則性 29 1.5.5 溶液中聚合體單晶的成長 32 1.5.6 熔融狀態中結晶之聚合體晶體形態學 32 1.5.7 聚噻吩(Polyhiophene)共聚物自組裝行為 34 1.5.7.1 聚噻吩 34 1.5.7.2 聚噻吩烷基的排列方式 35 1.5.7.3 聚噻吩高分子鏈之不同分子量與不同探鏈的觀測 37 1.5.7.4 聚噻吩高分子鏈於不同溶劑的濃度及老化影響 39 1.5.7.5 聚噻吩高分子鏈於溶劑中不同蒸發速率影響 42 1.5.7.6 聚噻吩高分子鏈退火作用影響 43 1.5.7.7 聚噻吩高分子鏈的定向及結晶性 44 1.5.7.8 聚噻吩高分子鏈摻混富勒烯衍生物 47 1.6 研究動機與目的 53 1.7 研究架構 54 第二章 實驗部分 56 2.1實驗藥品與設備 56 2.1.1 實驗材料與藥品 56 2.1.2 實驗設備 58 2.2 實驗步驟 58 2.3 實驗方法與儀器原理 59 2.3.1示差掃描熱分析法(DSC) 59 2.3.2 小角度X光散射SAXS和WAXS實驗 61 2.3.3 原子力顯微鏡實驗(AFM) 63 第三章 實驗結果與討論 65 3.1 P3HT/PCBM混合物的互溶、結晶和微相行為 65 Ⅰ.P3HT和PCBM的互溶和結晶情形(ta=0小時) 66 Ⅱ.P3HT和PCBM的互溶現象與恆溫加熱退火時間(tma)的關係 68 Ⅲ. Avrami分析P3HT和P3HT/PCBM混合物的結晶速率 71 3.2 P3HT的表面型態研究 76 3.3 P3HT的凝膠行為對P3HT和P3HT/PCBM混合物的影響 78 Ⅰ.不同老化時間對P3HT和P3HT/PCBM混合物的結晶溫度和溶化溫度的影響 78 Ⅱ.老化時間減慢P3HT和P3HT/PCBM混合物的結晶速率 86 Ⅲ.奈米線的存在和不同溫度的關係 88 3.4 P3HT和P3HT/PCBM混合物結構研究 91 Ⅰ.不同溫度對P3HT和P3HT/PCBM混合物結構的影響 91 Ⅱ.不同老化時間對1.45nm-1結構峰的影響 96 Ⅲ.和1.45nm-1結構峰同時出現在17nm-1的肩膀峰 99 Ⅳ.特殊結構升溫時的Tm和Tf 108 第四章 結論 111 第五章 參考文獻 112   圖目錄 圖1.1第一、二及三代太陽能電池之效率及相對成本之關係圖 2 圖1.2 半導體之能帶結構 (a)直接能隙及(b)間接能隙 5 圖1.3 太陽能電池的能隙示意圖 6 圖1.4 太陽能電池照光前後電壓-電流密度曲線 7 圖1.5為各類太陽能電池歷年最高效率紀錄圖 8 圖1.6 太陽能電池材料分類圖 9 圖1.7 不同太陽能材料能量轉換效率範圍 10 圖1.8 CIGS真空沉積法 12 圖1.9 低成本非真空CIGS沉積法[14] 12 圖1.10 多元素共蒸鍍法 13 圖1.11 可見光區光譜分佈圖 14 圖1.12 染料敏化太陽能電池中結構與原理示意圖 18 圖1.13 層疊式有機太陽能電池 19 圖1.14 聚合物太陽能電池的時間表示意圖 20 圖1.15 p-n異質接面型太陽能電池結構[27] 22 圖1.16 能階與激子產生與傳導過程示意圖[28] 22 圖1.17 有機光伏效應的總體體制[28] 23 圖1.18 四種共軛聚合物光伏電池器件結構 24 圖1.19 高分子的集結型態 26 圖1.20 分子自組裝結構的階層性尺寸 28 圖1.21 平面鋸齒形構模型示意圖 31 圖1.22 晶胞結構示意圖[36] 31 圖1.23 兩個3-烷基噻吩單體為一單元,聚(3-烷基噻吩)可能連接方式 36 圖1.24 三個3-烷基噻吩單體為一單元,聚(3-烷基噻吩)可能連接方式 36 圖1.25 聚 3-己基噻吩高分子鏈兩種不同連接方式 37 圖1.26 不同分子量P3HT的晶粒取向變化示意圖 38 圖1.27 不同分子量P3HT薄膜觀測有序排列情形 38 圖1.28 不同P3HT分子量於TEM電子繞射模式圖示 39 圖1.29 1.6 wt%的P3HT靜置時間為(a) 0 hr;(b) 6 hr,於AFM下的形態 40 圖1.30 配置稀薄P3HT溶於THF,經過熱處理後中間成核機制 41 圖1.31 RR-P3HT溶液之UCST型相圖示意圖和吉布斯自由能量圖譜與臨界核大小 41 圖1.32 P3HT凝膠溶於芳烴溶劑的機制示意圖 41 圖1.33 P3AT層狀增長各向異性示意圖 43 圖1.34 P3HT分子結構示意圖 45 圖1.35 上圖為TEM圖像的P3HT“shish-kebab”,下圖為納米纖維的shish-kebab鏈堆疊的示意圖 46 圖1.36 C60結晶化的現象 49 圖1.37 P3HT和PCBM混合物的DSC圖譜 49 圖1.38 成塊異質接面高分子分子級結構示意圖 51 圖1.39 P3HT和PCBM混合物的WSAXS圖譜和GIXS圖譜,分別是左和右,(c)和(d)則是經過退火的處理 52 圖1.40研究架構示意圖 55 圖2.1 實驗步驟流程圖 59 圖2.2 物質與探測粒子的交互作用 62 圖2.3 原子力顯微鏡檢測系統示意圖 64 圖2.4 PPP-NCHR針頭巨觀顯示圖 64 圖3.1 P3HT和P3HT/PCBM混合物之DSC升降溫圖譜,(a)圖為升溫,(b)圖為降溫,老化時間為0小時 67 圖3.2 DSC實驗升降溫過程中Tm和Tf的趨勢圖 68 圖3.3 DSC恆溫加熱退火降溫圖譜,從左上到右下,分別為純P3HT、PCBM16.7、PCBM20、PCBM25、PCBM33.33和PCBM50的樣品,老化時間為0小時 70 圖3.4 DSC各濃度恆溫加熱退火降溫趨勢圖 71 圖3.5 P3HT和P3HT/PCBM混合物的Avrami分析圖 72 圖3.6 P3HT和P3HT/PCBM混合物的Avrami分析圖 73 圖3.7 P3HT和P3HT/PCBM混合物的Avrami分析圖,不同PCBM濃度的P3HT/PCBM混合物有不同的K和n值 73 圖3.8 P3HT和不同PCBM濃度的P3HT/PCBM混合物的LogK值對PCBM重量百分比作圖 74 圖3.9 P3HT和不同PCBM濃度的P3HT/PCBM混合物的各溫度恆溫結晶速度分析圖,分別為純P3HT、PCBM16.7、PCBM20、PCBM25、PCBM33.33和PCBM50的樣品,老化時間為0小時 75 圖3.10 AFM圖譜,左邊為Topography,右邊為NCMphase 77 圖3.11 P3HT和P3HT/PCBM混合物之DSC升降溫圖譜,(a)圖為升溫,(b)圖為降溫,老化時間為12小時 80 圖3.12 P3HT和P3HT/PCBM混合物之DSC升降溫圖譜,(a)圖為升溫,(b)圖為降溫,老化時間為168小時 81 圖3.13 P3HT和P3HT/PCBM混合物之DSC升降溫圖譜,(a)圖為升溫,(b)圖為降溫,老化時間為336小時 82 圖3.14 老化時間為12、168和336小時的DSC分析溫圖譜,為Tf對PCBM重量百分比作圖 83 圖3.15 P3HT DSC恆溫加熱退火降溫圖譜,老化時間為0小時 84 圖3.16 DSC恆溫加熱退火降溫圖譜,從左上到右下,分別為純P3HT、PCBM16.7、PCBM20、PCBM25、PCBM33.33和PCBM50的樣品,老化時間為168小時 85 圖3.17 老化時間168小時之DSC各濃度恆溫加熱退火降溫趨勢圖 86 圖3.18 P3HT結晶模擬示意圖 87 圖3.19 不同老化時間的P3HT在300℃高溫加熱的DSC圖譜,左邊為老化時間0小時,右邊為老化時間168小時 89 圖3.20 不同高溫加熱後的P3HT之AFM圖譜 90 圖3.21 P3HT之升溫時的WAXS圖譜,老化時間為0小時 92 圖3.22 P3HT之降溫時的WAXS圖譜,老化時間為0小時 93 圖3.23 P3HT/PCBM(PCBM16.7)之升溫時的WAXS圖譜,老化時間為0小時 94 圖3.24 P3HT/PCBM(PCBM16.7)之降溫時的WAXS圖譜,老化時間為0小時 95 圖3.25 P3HT和P3HT/PCBM混合物在常溫下的WAXS圖譜,老化時間為0小時 97 圖3.26 P3HT和P3HT/PCBM混合物在常溫下的WAXS圖譜,老化時間為168小時 98 圖3.27 P3HT和P3HT/PCBM混合物在常溫下的WAXS圖譜,在肩膀峰的局部圖譜,老化時間左右分別為0小時和168小時 101 圖3.28 P3HT升降溫之 WAXS圖譜,左邊為升溫,右邊為降溫,在肩膀峰的局部圖譜,老化時間為0小時 102 圖3.29 P3HT/PCBM(PCBM16.7)混合物升降溫之 WAXS圖譜,左邊為升溫,右邊為降溫,在肩膀峰的局部圖譜,老化時間為0小時 103 圖3.30 P3HT/PCBM(PCBM25)混合物升降溫之 WAXS圖譜,左邊為升溫,右邊為降溫,在肩膀峰的局部圖譜,老化時間為0小時 104 圖3.31 P3HT升降溫之 WAXS圖譜,左邊為升溫,右邊為降溫,在肩膀峰的局部圖譜,老化時間為168小時 105 圖3.32 P3HT/PCBM(PCBM16.7)混合物升降溫之 WAXS圖譜,左邊為升溫,右邊為降溫,在肩膀峰的局部圖譜,老化時間為168小時 106 圖3.33 P3HT/PCBM(PCBM25)混合物升降溫之 WAXS圖譜,左邊為升溫,右邊為降溫,在肩膀峰的局部圖譜,老化時間為168小時 107 圖3.34 特殊結構之DSC圖譜 109 圖3.35 4.5 nm結構模擬示意圖 110   表目錄 表1.1 半導體之能帶結構與能隙 15 表3.1 不同老化時間,升降溫DSC圖譜中Tm與Tf的值 83

    第五章 參考文獻

    1. Barnham, K.W.J., M. Mazzer, and B. Clive, Resolving the energy crisis: nuclear or photovoltaics? Nature Materials, 2006. 5(3): p. 161-164.
    2. Becquerel, A.E., Mémoire sur les effets électriques produits sous
    l'influence des rayons solaires. Comptes Rendus des Séances Hebdomadaires, 1839. 9: p. 561-567.
    3. Fox, M., Optical Properties of Solids. Oxford, New York, 2001.
    4. Green, M.A., Potential for low dimensional structures in photovoltaics. Materials Science and Engineering: B, 2000. 74(1–3): p. 118-124.
    5. Ratier, B., et al., Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review. Polymer International, 2012. 61(3): p. 342-354.
    6. Shaheen, S.E., D.S. Ginley, and G.E. Jabbour, Organic-based photovoltaics. toward low-cost power generation. Mrs Bulletin, 2005. 30(1): p. 10-19.
    7. Green, M.A., Thin-film solar cells: review of materials, technologies and commercial status. Journal of Materials Science-Materials in Electronics, 2007. 18: p. S15-S19.
    8. Gale, R.P.M., R. W.; Dingle, B. D.; Gormley, J. V.; Burgess, R. M., High-efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandem solar cells. IN: IEEE Photovoltaic Specialists Conference, 21st, Kissimmee, 1990. 1: p. 53-57.
    9. R. R. King, R.A.S., D. C. Law, J. T. Yen, M. Haddad, Z. M. Fetzer, K. M. Edmondson, G. S. Kinsey, H. Yoon, M. Joshi, S. Mesropian, H. L. Cotal, D. D. Krut, J. H. Ermer, N. H. Karam., New horizons in III-V multijunction terrestrial concentrator cell research. 21st Euro. Conf. Photovoltaic Solar Energy Conference, 2006: p. 4-8.
    10. Hahn, H., et al., Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur. Zeitschrift für anorganische und allgemeine Chemie, 1953. 271(3-4): p. 153-170.
    11. Tell, B. and H.M. Kasper, Optical and Electrical Properties of Aggas2 and Aggase2. Physical Review B, 1971. 4(12): p. 4455-&.
    12. Tell, B., J.L. Shay, and H.M. Kasper, Room-Temperature Electrical Properties of 10 I-Iii-Vi2 Semiconductors. Journal of Applied Physics, 1972. 43(5): p. 2469-&.
    13. Shay, J.L., Ternary chalcopyrite semiconductors: growth, electronic properties, and applications [by] J. L. Shay and J. H. Wernick. International series of monographs in the science of the solid state ; v. 7, ed. J.H.j.a. Wernick1975, Oxford, New York: Pergamon Press.
    14. Kaelin, M., D. Rudmann, and A.N. Tiwari, Low cost processing of CIGS thin film solar cells. Solar Energy, 2004. 77(6): p. 749-756.
    15. X. Wu, J.C.K., R. G. Dhere, C DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, 16.5% efficient CdS/CdTe polycrystalline thin film solar cell. Conference Proc. 17th Euro. Conf. Photovoltaic Solar Energy Conference, 2001: p. 955.
    16. Mattox, D., Handbook of Physical Vapor Deposition (PVD) Processing. Noyes Publ., Park Ridge, 1998.
    17. Sze, S.M., Physics of Semiconductor Device. Wiley Interscience Publication,New York, 1981.
    18. Qu, L. and X. Peng, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. Journal of the American Chemical Society, 2002. 124(9): p. 2049-2055.
    19. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
    20. Becquerel, A.E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus de L'Academie des Sciences, 1839. 9: p. 145-149.
    21. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    22. Luo, Y., D. Li, and Q. Meng, Towards Optimization of Materials for Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(45): p. 4647-4651.
    23. Merritt, V.Y. and H.J. Hovel, Organic Solar-Cells of Hydroxy Squarylium. Applied Physics Letters, 1976. 29(7): p. 414-415.
    24. Tang, C.W., 2-Layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): p. 183-185.
    25. Yakimov, A. and S.R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters, 2002. 80(9): p. 1667-1669.
    26. Jørgensen, M., et al., Stability of Polymer Solar Cells. Advanced Materials, 2012. 24(5): p. 580-612.
    27. Shrotriya, V., Organic photovoltaics: Polymer power. Nat Photon, 2009. 3(8): p. 447-449.
    28. Moliton, A. and J.-M. Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer International, 2006. 55(6): p. 583-600.
    29. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
    30. Lai, M.-T., Studies of the self-assembly of P3HT-b-PMMA rod-coil diblock copolymer. 2006.
    31. Ikkala, O. and G. ten Brinke, Functional materials based on self-assembly of polymeric supramolecules. Science, 2002. 295(5564): p. 2407-2409.
    32. Stupp, S.I., et al., Supramolecular materials: Self-organized nanostructures. Science, 1997. 276(5311): p. 384-389.
    33. Jones, R.A.L., Soft Condensed Matter. Oxford, New York, 2002.
    34. 胡德, 高分子物理與機械性質. 國立編譯館, 1980.
    35. Zhang, J., et al., Mechanical properties, structure analysis and enzymatic degradation of uniaxially cold-drawn films of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate]. Polymer Degradation and Stability, 2011. 96(12): p. 2130-2138.
    36. Peng, R.D., et al., Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus. Computational Materials Science, 2012. 60(0): p. 19-31.
    37. Tracy, M.A. and R. Pecora, Dynamics of Rigid and Semirigid Rodlike Polymers. Annual Review of Physical Chemistry, 1992. 43: p. 525-557.
    38. Petekidis, G., G. Fytas, and H. Witteler, Orientation Fluctuations in Concentrated-Solutions of Hairy-Rod Polymers. Colloid and Polymer Science, 1994. 272(11): p. 1457-1465.
    39. Tiesler, U., et al., Analysis of the conformation of a stiff-chain polyester by measurements of the magnetic birefringence in solution. Macromolecules, 1996. 29(21): p. 6832-6836.
    40. Vanderschoot, P. and T. Odijk, Statistical-Theory and Structure Factor of a Semidilute Solution of Rodlike Macromolecules Interacting by Vanderwaals Forces. Journal of Chemical Physics, 1992. 97(1): p. 515-524.
    41. Granstrom, M. and O. Inganas, A Kinetic-Study of Thermal Undoping in the Poly(3-Alkylthiophenes). Synthetic Metals, 1992. 48(1): p. 21-31.
    42. Mo, Z., et al., X-Ray-Scattering from Polythiophene - Crystallinity and Crystallographic Structure. Macromolecules, 1985. 18(10): p. 1972-1977.
    43. Elsenbaumer, R.L., K.Y. Jen, and R. Oboodi, Processible and Environmentally Stable Conducting Polymers. Synthetic Metals, 1986. 15(2-3): p. 169-174.
    44. Sato, M., S. Tanaka, and K. Kaeriyama, Soluble Conducting Polythiophenes. Journal of the Chemical Society-Chemical Communications, 1986(11): p. 873-874.
    45. R. Sugimoto, S.T., H. B. Gu, and K. Yoshino, Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property. Chem. Express, 1986. 1: p. 635-638.
    46. Hotta, S., et al., Spectroscopic Studies of Soluble Poly(3-Alkylthienylenes). Macromolecules, 1987. 20(1): p. 212-215.
    47. Lim, J.A., et al., Polymer semiconductor crystals. Materials Today, 2010. 13(5): p. 14-24.
    48. Hartmann, L., et al., 2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly(3-hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy. Advanced Functional Materials, 2011. 21(21): p. 4047-4057.
    49. Salammal, S.T., et al., Impact of Thermal Annealing on the Semicrystalline Nanomorphology of Spin-Coated Thin Films of Regioregular Poly(3-alkylthiophene)s as Observed by High-Resolution Transmission Electron Microscopy and Grazing Incidence X-ray Diffraction. Macromolecules, 2012. 45(13): p. 5575-5585.
    50. Jørgensen, M., K. Norrman, and F.C. Krebs, Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells, 2008. 92(7): p. 686-714.
    51. Wu, Z.Y., et al., Temperature and Molecular Weight Dependent Hierarchical Equilibrium Structures in Semiconducting Poly(3-hexylthiophene). Macromolecules, 2010. 43(10): p. 4646-4653.
    52. Brinkmann, M. and P. Rannou, Effect of Molecular Weight on the Structure and Morphology of Oriented Thin Films of Regioregular Poly(3-hexylthiophene) Grown by Directional Epitaxial Solidification. Advanced Functional Materials, 2007. 17(1): p. 101-108.
    53. Klimov, E., et al., Scanning Near-Field and Confocal Raman Microscopic Investigation of P3HT−PCBM Systems for Solar Cell Applications. Macromolecules, 2006. 39(13): p. 4493-4496.
    54. Newbloom, G.M., et al., Mesoscale Morphology and Charge Transport in Colloidal Networks of Poly(3-hexylthiophene). Macromolecules, 2011. 44(10): p. 3801-3809.
    55. Malik, S., T. Jana, and A.K. Nandi, Thermoreversible gelation of regioregular poly(3-hexylthiophene) in xylene. Macromolecules, 2001. 34(2): p. 275-282.
    56. Malik, S. and A.K. Nandi, Influence of alkyl chain length on the gelation mechanism of thermoreversible gels of regioregular poly(3-alkyl thiophenes) in xylene. Journal of Applied Polymer Science, 2007. 103(4): p. 2528-2537.
    57. Chen, C.-Y., et al., Formation and Thermally-Induced Disruption of Nanowhiskers in Poly(3-hexylthiophene)/Xylene Gel Studied by Small-Angle X-ray Scattering. Macromolecules, 2010. 43(17): p. 7305-7311.
    58. Huang, Y., H. Cheng, and C.C. Han, Temperature Induced Structure Evolution of Regioregular Poly(3-hexylthiophene) in Dilute Solution and its Influence on Thin Film Morphology. Macromolecules, 2010. 43(23): p. 10031-10037.
    59. Sobkowicz, M.J., et al., Effect of Fullerenes on Crystallization-Induced Aggregation in Polymer Photovoltaics Casting Solutions. Macromolecules, 2011. 45(2): p. 1046-1055.
    60. Huang, Y., H. Cheng, and C.C. Han, Unimer–Aggregate Equilibrium to Large Scale Association of Regioregular Poly(3-hexylthiophene) in THF Solution. Macromolecules, 2011. 44(12): p. 5020-5026.
    61. Park, Y.D., et al., Solubility-driven polythiophene nanowires and their electrical characteristics. Journal of Materials Chemistry, 2011. 21(7): p. 2338-2343.
    62. Newbloom, G.M., K.M. Weigandt, and D.C. Pozzo, Electrical, Mechanical, and Structural Characterization of Self-Assembly in Poly(3-hexylthiophene) Organogel Networks. Macromolecules, 2012. 45(8): p. 3452-3462.
    63. Xu, W., et al., Sol-gel transition of poly(3-hexylthiophene) revealed by capillary measurements: phase behaviors, gelation kinetics and the formation mechanism. Soft Matter, 2012. 8(3): p. 726-733.
    64. Koppe, M., et al., Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance. Macromolecules, 2009. 42(13): p. 4661-4666.
    65. Yuan, Y., J.M. Zhang, and J.Q. Sun, Effect of Solvent Evaporation Rate on Order-to-Disorder Phase Transition Behavior of Regioregular Poly(3-butylthiophene). Macromolecules, 2011. 44(15): p. 6128-6135.
    66. Yuan, Y., et al., Polymorphism and Structural Transition around 54 °C in Regioregular Poly(3-hexylthiophene) with High Crystallinity As Revealed by Infrared Spectroscopy. Macromolecules, 2011. 44(23): p. 9341-9350.
    67. Bolognesi, A., et al., Evidence of Chain Planarity in Polyalkylthiophene - Low-Temperature Structural-Analysis of Poly(3-Decylthiophene). Makromolekulare Chemie-Rapid Communications, 1991. 12(1): p. 9-14.
    68. Garnier, F., et al., Molecular Engineering of Organic Semiconductors - Design of Self-Assembly Properties in Conjugated Thiophene Oligomers. Journal of the American Chemical Society, 1993. 115(19): p. 8716-8721.
    69. Mccullough, R.D., et al., Self-Orienting Head-to-Tail Poly(3-Alkylthiophenes) - New Insights on Structure-Property Relationships in Conducting Polymers. Journal of the American Chemical Society, 1993. 115(11): p. 4910-4911.
    70. Prosa, T.J., et al., X-Ray Structural Studies of Poly(3-Alkylthiophenes) - an Example of an Inverse Comb. Macromolecules, 1992. 25(17): p. 4364-4372.
    71. Tashiro, K., et al., Structure and Thermochromic Solid-State Phase-Transition of Poly(3-Alkylthiophene). Journal of Polymer Science Part B-Polymer Physics, 1991. 29(10): p. 1223-1233.
    72. Kim, D.H., et al., Solvent Vapor-Induced Nanowire Formation in Poly(3-hexylthiophene) Thin Films. Macromolecular Rapid Communications, 2005. 26(10): p. 834-839.
    73. Brinkmann, M., et al., Epitaxial Growth of Highly Oriented Fibers of Semiconducting Polymers with a Shish-Kebab-Like Superstructure. Advanced Functional Materials, 2009. 19(17): p. 2759-2766.
    74. Yu, G., et al., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789-1791.
    75. Nazario Martín, F.G., Fullerene Polymers: Synthesis, Properties and Applications 2009.
    76. Boudouris, B.W., et al., Synthesis, Optical Properties, and Microstructure of a Fullerene-Terminated Poly(3-hexylthiophene). Macromolecules, 2009. 42(12): p. 4118-4126.
    77. Huang, Y.-C., et al., Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy. Solar Energy Materials and Solar Cells, 2009. 93(6-7): p. 888-892.
    78. Verploegen, E., et al., Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends. Advanced Functional Materials, 2010. 20(20): p. 3519-3529.
    79. Parnell, A.J., et al., Depletion of PCBM at the Cathode Interface in P3HT/PCBM Thin Films as Quantified via Neutron Reflectivity Measurements. Advanced Materials, 2010. 22(22): p. 2444-2447.
    80. Gholamkhass, B. and S. Holdcroft, Toward Stabilization of Domains in Polymer Bulk Heterojunction Films. Chemistry of Materials, 2010. 22(18): p. 5371-5376.
    81. Kiel, J.W., A.P.R. Eberle, and M.E. Mackay, Nanoparticle Agglomeration in Polymer-Based Solar Cells. Physical Review Letters, 2010. 105(16): p. 168701.
    82. Grancini, G., et al., Transient Absorption Imaging of P3HT:PCBM Photovoltaic Blend: Evidence For Interfacial Charge Transfer State. The Journal of Physical Chemistry Letters, 2011. 2(9): p. 1099-1105.
    83. Tada, A., et al., Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nature Materials, 2011. 10(6): p. 450-455.
    84. Liao, H.-C., et al., Quantitative Nanoorganized Structural Evolution for a High Efficiency Bulk Heterojunction Polymer Solar Cell. Journal of the American Chemical Society, 2011. 133(33): p. 13064-13073.
    85. Sanyal, M., et al., Effect of Photovoltaic Polymer/Fullerene Blend Composition Ratio on Microstructure Evolution during Film Solidification Investigated in Real Time by X-ray Diffraction. Macromolecules, 2011. 44(10): p. 3795-3800.
    86. Wu, W.-R., et al., Competition between Fullerene Aggregation and Poly(3-hexylthiophene) Crystallization upon Annealing of Bulk Heterojunction Solar Cells. Acs Nano, 2011. 5(8): p. 6233-6243.
    87. Yin, W. and M. Dadmun, A New Model for the Morphology of P3HT/PCBM Organic Photovoltaics from Small-Angle Neutron Scattering: Rivers and Streams. Acs Nano, 2011. 5(6): p. 4756-4768.
    88. Kozub, D.R., et al., Polymer Crystallization of Partially Miscible Polythiophene/Fullerene Mixtures Controls Morphology. Macromolecules, 2011. 44(14): p. 5722-5726.
    89. Nicolet, C., et al., Optimization of the Bulk Heterojunction Composition for Enhanced Photovoltaic Properties: Correlation between the Molecular Weight of the Semiconducting Polymer and Device Performance. The Journal of Physical Chemistry B, 2011. 115(44): p. 12717-12727.
    90. Liu, H.-J., et al., Surface and interface porosity of polymer/fullerene-derivative thin films revealed by contrast variation of neutron and X-ray reflectivity. Soft Matter, 2011. 7(19): p. 9276-9282.
    91. Liao, H.-C., et al., Nanoparticle-Tuned Self-Organization of a Bulk Heterojunction Hybrid Solar Cell with Enhanced Performance. Acs Nano, 2012. 6(2): p. 1657-1666.
    92. Collins, B.A., J.R. Tumbleston, and H. Ade, Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability. The Journal of Physical Chemistry Letters, 2011. 2(24): p. 3135-3145.
    93. Li Destri, G., et al., Interfacial Free Energy Driven Nanophase Separation in Poly(3-hexylthiophene)/[6,6]-Phenyl-C61-butyric Acid Methyl Ester Thin Films. Langmuir, 2012. 28(11): p. 5257-5266.
    94. Huang, W.Y., et al., Aggregation and Gelation Effects on the Performance of Poly(3-hexylthiophene)/Fullerene Solar Cells. Macromolecules, 2008. 41(20): p. 7485-7489.
    95. Parnell, A.J., et al., Nanoscale Phase Separation of P3HT PCBM Thick Films As Measured by Small-Angle X-ray Scattering. Macromolecules, 2011. 44(16): p. 6503-6508.
    96. Yang, X., et al., Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Letters, 2005. 5(4): p. 579-583.
    97. Schmidt-Hansberg, B., et al., Moving through the Phase Diagram: Morphology Formation in Solution Cast Polymer–Fullerene Blend Films for Organic Solar Cells. Acs Nano, 2011. 5(11): p. 8579-8590.
    98. Beaujuge, P.M. and J.M.J. Fréchet, Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. Journal of the American Chemical Society, 2011. 133(50): p. 20009-20029.
    99. Pearson, A.J., et al., Imaging the Bulk Nanoscale Morphology of Organic Solar Cell Blends Using Helium Ion Microscopy. Nano Letters, 2011. 11(10): p. 4275-4281.
    100. Chan, S.-H., et al., Highly Efficient P3HT: C60 Solar Cell Free of Annealing Process. Macromolecules, 2011. 44(22): p. 8886-8891.
    101. Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): p. 864-868.
    102. Li, G., R. Zhu, and Y. Yang, Polymer solar cells. Nat Photon, 2012. 6(3): p. 153-161.
    103. Cai, W., X. Gong, and Y. Cao, Polymer solar cells: Recent development and possible routes for improvement in the performance. Solar Energy Materials and Solar Cells, 2010. 94(2): p. 114-127.
    104. Zhao, J., et al., Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. Journal of Physical Chemistry B, 2009. 113(6): p. 1587-1591.
    105. Huang, Y.-C., et al., Small- and Wide-Angle X-ray Scattering Characterization of Bulk Heterojunction Polymer Solar Cells with Different Fullerene Derivatives. The Journal of Physical Chemistry C, 2012. 116(18): p. 10238-10244.
    106. Kim, J.Y. and D. Frisbie, Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends. Journal of Physical Chemistry C, 2008. 112(45): p. 17726-17736.
    107. 鄭有舜, X-光小角度散射在軟物質研究上的應用. 物理雙月刊, 2004年4月. (廿六卷二期): p. 416-424.
    108. Sivia, D.S., Elementary scattering theory for x-ray and neutron users. Oxford University Press, 2010.
    109. Geisse, N.A., AFM and combined optical techniques. Materials Today, 2009. 12(7–8): p. 40-45.
    110. http://www.nanosensors.com/PPP-NCHR.htm.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE