研究生: |
林厚均 |
---|---|
論文名稱: |
兩性團聯共聚物製備及其藥物釋放應用之性質研究 Studies on the Preparation and Properties of Amphiphilic diblock Copolymers for Drug Delivery Application |
指導教授: | 朱一民 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 水膠 、開環聚合 、溫度敏感性 、體外藥物釋放 |
外文關鍵詞: | hydrogel, ring-opening polymerization, thermosensitivitive, in vitro drug release |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以生物可分解高分子作為藥物載體已被廣為研究,近年來更開發了溫度敏感型水膠的藥物載體。溫感型水膠在加工上可以避免使用有機溶劑而改用大量的水,不僅可減少後製的純化步驟,更因為富含親水的特性,與活體組織相類似,因此可應用在親水性、親油性藥物的藥物傳遞,及不穩定的蛋白質分子傳輸如蛋白質、基因等組織工程方面。除此之外,水膠材料可具備生物相容性、生物可降解性、無毒性等性質,隨著不同官能基對外在環境會有不同應答,使得水膠的應用範圍更為廣泛。
因聚酯類降解的時間較好控制,作為藥物載體時具有良好、易控制釋放的優點而廣受到醫藥學界的重視。實驗中利用生物可分解材料甲氧基化聚乙二醇(methoxy poly(ethylene glycol), mPEG )與聚酯類以開環聚合方式( ring-opening polymerization )獲得具有生物可分解、生物相容性、有親疏水兩性鏈段的二團聯共聚物。將兩團聯共聚物水溶液經過分析,測其臨界微胞濃度,都低於10-3 mg/mL以下;粒徑分布在100~150nm之間;此外mPEG-PδVLA與mPEG-PγVLA的臨界成膠濃度皆為15wt%,而mPEG-PαVLA的臨界成膠濃度則為12wt%,實驗中使用的材料皆能在人體體溫37℃時形成水膠,尤其以mPEG-PαVLA的溫度適用範圍為最大(22℃~50℃)。mPEG-PδVLA、mPEG-PγVLA及mPEG-PαVLA在37℃緩衝溶液下,經過一個月的降解測試,約有50~80%的材料會被降解掉。以MTT進行細胞毒殺實驗時,發現無包藥的材料在培養一至兩天內,對老鼠的纖維母細胞( 3T3 cell )而言皆沒有明顯的毒性。水膠包埋替考拉寧( Teicoplanin )的藥物釋放, 在連續30 天觀察累積藥物釋放結果,以15 wt% mPEG-PγVLA水膠釋放最多可達32%,而15wt% mPEG-PαVLA水膠達到最慢釋放效果,30 天累積釋放28%,根據累積釋放曲線的觀察,可推測此水膠的釋放級數應為趨近於零級反應,故本實驗所研究的二團聯共聚物,應為一穩定且具有緩慢釋放效果的藥物釋放載體。
The biodegradable polymers used as drug delivery carriers have been widely researched in the past years. In recent years, one of the drug delivery carrier, hydrogel, has also been developed. Synthetic hydrogel without the organic solvent will be reduced the purify steps in the following formulation. Hydrogels can contain amount of water and resemble nature living tissue, so it can be used as drug delivery carrier for protein, hydrophilic and hydrophobic drugs. In additionally, they are biodegradability, biocompatibility, non-toxicity, and own the various responses to the environment. Hydrogels are extensively application of their unique behaviors.
In this study, we used the various mPEG-PVLA copolymers prepared by ring-opening polymerization of the mPEG, L-lactide, and various isomers of the δ-Valerolactone for the advanced drug delivery systems. Their structures will be measured by the GPC, 1H-NMR, DSC. Thermosensitive properties of the copolymers were tested using the tube inversion method. As a result, the sol–gel–sol transition temperature range could be varied, which might be very useful for its application as injectable drug delivery systems. The various hydrogel showed low cytotoxicity toward mouse fibroblasts 3T3 cell. After hydrogel particles were prepared, Teicoplanin is encapsulated. During 30 days accumulative drug release, 15 wt% mPEG-PγVLA has the most amount of release ratio 32%, and the most stable release is 15wt% mPEG-PαVLA, 28%. In thiis study, these amphiphilic diblock copolymers released Teicoplanin in a gradual mechanism and exhibited good stability, according to in vitro degradation behavior and in vitro drug release behavior. Because the materials degradation very slowly, the initial stage Teicoplanin release only by diffusion. As results, these hydrogels are very potential in long term controlled release of drug. controlled release system.
1. S. Ghosh, Recent research and development in synthetic polymer-based drug delivery systems, Journal of Chemical Research (2004) 241-246.
2. R. Chandra, R. Rustgi, Biodegrable polymers, Progress in Polymer Science 23 (1998) 1273-1335.
3. A. Sodergard, M. Stolt, Properties of lactic acid based polymers and their correlation with compostition, Progress in Polymer Science 27(2007) 1123-1163.
4. T. Nakanishi, S. Fukushima, K. Okamotoa, M. Suzuki, Y. Matsumura, M. Yokoyama , T. Okano , Y. Sakurai, K. Kataoka, Development of the polymer micelle carrier system for doxorubicin, Journal of Control Release 74 (2001) 295-302.
5. J. O. Hollinger, Biomedical applications of synthetic biodegradable polymers, CRC Press, Inc., Boca Raton. (1995).
6. N. Kumar, R. S. Langer, A. J. Domb, Polyanhydrides: an overview, Advanced Drug Delivery Reviews 54 (2002) 889-910.
7. A. Gopferich, J. Tessmar, Polyanhydride degradation and erosion, Advanced Drug Delivery Reviews 54 (2002) 911-931.
8. J. Kopecek, Polymer chemistry: swell gels, Nature 417 (2002) 388-389, 391.
9. A. S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews 54 (2002) 3-12.
10. K. Y. Lee, D. J. Mooney, Hydrogels for tissue engineering, Chemical Reviews 101 (2001) 1869-1879.
11. W. B. Gert, V. Ruud, F. Okke, et al. Hydrogels for the controlled release of pharmaceutical proteins, Parmaceutical Technology (2001) 110-120.
12. Y. S. Choi, S. R. Hong, Y. M. Lee, K. W. Song, M. H. Park, Y. S. Nam, Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge, Biomaterials 20 (1999) 409-417.
13. S. DINESH, R. ALOK, Biomedical Applications of Chitin, Chitosan, and Their Derivatives, Journal of Macromolecular Science: Reviews in Macromolecular Chemistry & Physics 40 (2000) 69-83.
14. C. A. Finch, Poly(vinyl alcohol): Properties and Applications, Wiley: London (1973).
15. W. E. Hennink, C. F. van Nostrum, Novel crosslinking methods to design hydrogels, Advanced Drug Delivery Reviews 54 (2002) 13-36.
16. Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews 53 (2001) 321-339.
17. N. K. Peppas, A. R. Khare, Preparation , structure and diffusional behavior of hydrogels in controlled release, Advanced Drug Delivery Reviews 11 (1993) 1-35.
18. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, Polymeric systems for controlled drug release, Chemical Reviews 99 (1999) 3181-3198.
19. B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, S. W. Kim, New biodegradable polymers for injectable drug delivery systems, Journal of Control Release 62 (1999) 109-114.
20. B. Jeong, S. W. Kim, Y. H. Bae, Thermosensitive sol-gel reversible hydrogels, Advanced Drug Delivery Reviews 54 (2002) 37-51.
21. C. He, S. W. Kim, D. S. Lee, In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery, Journal of Control Release 127 (2008) 189-207.
22. A. Gutowska, J. S. Bark, I. C. Kwon, Y. H. Bae, Y. Cha, Squeezing hydrogels for controlled oral drug delivery, Journal of Control Release 48 (1997) 141-148.
23. V. Fanos, N. Kacet, G. Mosconi, A review of teicoplanin in the treatment of serious neonatal infections, Eur J Pediatr 156 (1997) 423-427.
24. C. L. Zhao, M. A. Winnik, Fluorescence Probe Techniques Used To Study Micelle Formation in Water-Soluble Block Copolymers, Langmuir 6 (1990) 514-516.
25. 張茂昌, 檢驗技術簡訊, 經濟部標準檢驗局第六組, 第7期 2004年四月出刊.
26. C. Y. Gonga, S. Shi, P. W. Dong, B. Kan, M. L. Gou, X. H. Wang, X. Y. Li, F. Luo, X. Zhao, Y. Q. Wei, Z. Y. Qian, Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel, International Journal of Pharmaceutics 365 (2009) 89–99.
27. E. Riva, M. Zanol, E. Selva, A. Borghi, Column Purification and HPLC Determination of Teicoplanin and A40926, Merrell Dow Research Institute, Lepetit Research Center.
28. Y. Tang, J. Singh, Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein, International Journal of Pharmaceutics 365 (2009) 34-43.
29. J. Ahmed, S. T. Prabhu, G. S. V. Raghavan, M. Ngadi, Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey, Journal of Food Engineering 79 (2007) 1207–1213.
30. Y. F. Tang, Y. M. Du, X. W. Hu, X. W. Shi, J. F. Kennedy, Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel, Carbohydrate Polymers 67 (2007) 491–499.
31. M. S. Shim, H. T. Lee, W. S. Shim, I. Park, H. Lee, T. Chang, S. W. Kim, D. S. Lee, Poly(D,L-lactic acid-co-glycolic acid) -b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water, J Biomed Mater Res 61, 2 (2002) 188-96.
32. B. Jeong, Y. H. Bae, S. W. Kim, Thermoreversible Gelation of PEG-PLGA-PEG Triblock Copolymer Aqueous Solutions, Macromolecules 32 (1999) 7064-7069.
33. D. S. Lee, M. S. Shim, S. W. Kim, H. Lee, I. Park, T. Chang, Novel Thermoreversible Gelation of Biodegradable PLGA-block-PEO-block-PLGA Triblock Copolymers in Aqueous Solution, Macromol. Rapid Commun. 22 (2001) 587-592.
34. M. Qiao, D. Chen, X. Ma, Y. Liu, Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels, International Journal of Pharmaceutics 294 (2005) 103–112.
35. L. Yu, G. G. Chang, H. Zhang, J. D. Ding, Temperature-Induced Spontaneous Sol–Gel Transitions of Poly(D,L-lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L-lactic acid-co-glycolic acid) Triblock Copolymers and Their End-Capped Derivatives in Water, Journal of Polymer Science: Part A 45, (2007) 1122–1133.
36. D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation, J Immunol Methods 94 (1986) 57-63.
37. R. G. Eve, J. C. Leroux, In situ-forming hydrogels—review of temperature-sensitive systems, European Journal of Pharmaceutics and Biopharmaceutics 58 (2004) 409–426.
38. C. K. Chan, I. M. Chu, Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol), Biomaterials 24 (2003) 47-54.
39. 黎元中, 光交聯聚乳酸-聚乙二醇-聚乳酸三團聯共聚物之水膠奈米粒子, 清大化工所碩士論文 (2004)
40. http://en.wikipedia.org/wiki/Collagen