研究生: |
陳昱彣 Chen, Yu-Wen |
---|---|
論文名稱: |
由結構與輔酶A的結合試驗比較幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的差異 X-ray crystallography structure and coenzyme A binding assay in phosphopantetheine adenylyltransferase mutants from Helicobacter pylori |
指導教授: |
殷献生
Yin, Hsien-Sheng |
口試委員: |
蘇士哲
楊呈堯 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 幽門螺旋桿菌 、輔酶A 、磷酸泛酸醯基乙胺腺苷轉移酶 |
外文關鍵詞: | Helicobacter pylori, CoenzymeA, Phosphopantetheine adenylyltransferase |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幽門螺旋桿菌為厭氧性格蘭氏陰性菌,當進入人體胃部時能藉其鞭毛及螺旋狀的外型鑽入胃黏膜中,以躲避胃酸的侵蝕。感染幽門螺旋桿菌會造成胃及十二指腸的發炎及潰瘍,更嚴重有造成胃癌的可能。輔酶A在生物體中是重要的醯基攜帶者,它參予了多種生物代謝反應。合成輔酶A的步驟中包含了五個步驟,分別由五種酵素所催化,酵素磷酸泛酸醯基乙胺腺苷轉移酶 (phosphopantetheine adenylyltransferas, PPAT)為其中的第四個酵素,它能夠催化合成反應中的一個速率決定步驟,且最後生合成的輔酶A可以抑制其活性。PPAT在不同細菌中有很高的序列相似性,但是與人類中相同功能的酵素序列相似性不高,所以若是針對此酵素來發展抗菌藥物可能對於抑制幽門螺旋桿菌感染有很大的幫助。
針對輔酶A可以與PPAT結合,並且對整個輔酶A生合成的步驟產生負回饋的特性,我們將PPAT中數個能夠與輔酶A結合的殘基 (residue)突變為丙氨酸 (alanine),藉以觀察輔酶A與PPAT是由什麼方式結合,以及辨別出在結合過程中較為重要的殘基,或許能夠幫助未來抗菌藥物的發展。
另一方面,先前實驗室的研究發現PPAT上兩個殘基的突變 (I4V/N76Y PPAT)會造成一個先前在PPAT相關研究中都未出現過的 domain-swapped結構,我們認為是由於第76個殘基天冬酰胺 (Asparagine)點突變為酪氨酸(Tyrosine)所致,並且也從結構上的結果證實。
[1] Kavermann H, Burns BP, Angermuller K, Odenbreit S, Fischer W, Melchers K, et al. Identifi cation and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med 2003;197:813–22.
[2] Guo BP, Mekalanos JJ. Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice. Proc Natl Acad Sci U S A 2002;99:8354–9
[3] J-Q. Huang and R. H. Hunt, Review article: Helicobactor pylori and gastric cancer— the clinicians’ point of view. Aliment Pharmacol Ther 2000, 14 (Suppl. 3); 48-54
[4] Gibbons AH. Helicobacter pylori: a clinician’s view. Hosp Med, 2003;64:535-8.
[5] S.A. Mirbagheri, M. Hasibi, M. Abouzari, A. Rashidi, Triple Standard quadruple
and ampicillin-sulbactam-based quadruple therapies for H. pylori eradication: A comparative three-armed randomized clinical trial, World J. Gastroenterol.12 (2006) 4888–4891.
[6] M.Minakari, A.H.D. Jazi, A. Shavakhi, N. Moghareabed, F. Fatahi, A randomized controlled trial: efficacy and safety of azithromycin, ofloxacin, bismuth, and omeprazole compared with amoxicillin, clarithromycin, bismuth, andomeprazole as second-line therapy in patients with Helicobacter pylori infection, Helicobacter 15 (2010) 154–159.
[7] D.Y. Graham, A. Shiotani, New concepts of resistance in the treatment of Helicobacter pylori infections, Nat. Clin. Pract. Gastroenterol. Hepatol. 5 (2008)321–331.
[8] Christina Spry, Kiaran Kirk and Kevin J. Saliba, Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 32 (2008) 56–106
[9] Roberta Leonardi,Yong-Mei Zhang, Charles O. Rock, Suzanne Jackowski. Coenzyme a: back in action. Progress in lipid research 44 (2005) 125–153
[10] Jackowski S, Rock CO. Regulation of coenzyme a biosynthesis. J. Bacteriology, Dec. 1981, 926-932
[11] Finlayson HJ, Seeley RC. The synthesis and absorption of pantothenic acid in the gastrointestinal tract of the adult sheep. J Sci Food Agric 1983;34:427–32.
[12] Fenstermacher DK, Rose RC. Absorption of pantothenic acid in rat and chick intestine. Am J Physiol 1986;250:G155–60.
[13] Tina Izard and Arie Geerlof. The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. The EMBO Journal Vol.18 No.8 pp.2021-2030, 1999
[14] Reizer J, Reizer A, Saier Jr MH. The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res Microbiol 1990;141:1069–72.
[15] Jackowski S. In: Neidhardt FC, Curtiss R, Gross CA, Ingraham JL, Lin ECC, Low KB et al, editors. Escherichia coli and Salmonella typhimurium: cellular and molecular biology.Washington (DC): American Society for Microbiology; 1996. p. 687–94.
[16] Vallari DS and Rock CO. Pantothenate transport in Escherichia coli. J Bacteriol 1985;162:1156–61.
[17] Bork P, Holm L, Koonin EV, Sander C. The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Prot Struct Funct Genet 1995;22:259–66.
[18] Schmitt E, Panvert M, Blanquet S, Mechulam Y. Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase. Nucleic Acids Res 1995;23:4793-8.
[19] Geerlof A, Lewendon A, Shaw WV. Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J.Biol.Chem 1999;274:27105–11.
[20] Tina Izard. The Crystal Structures of Phosphopantetheine Adenylyltransferase with Bound Substrates Reveal the Enzyme's Catalytic Mechanism. J. Mol. Biol. (2002) 315, 487-495
[21] Tina Izard. A Novel Adenylate Binding Site Confers Phosphopantetheine
Adenylyltransferase Interactions with Coenzyme A. J. Bacteriology, July 2003, 4074–4080
[22] Rock CO, Park H-W, Jackowski S. Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J Bacteriol 2003;185:3410–5.
[23] Vallari DS, Jackowski S. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J Bacteriol 1988;170:3961–6.
[24] Gerdes SY, Scholle MD, D’Souza M, Bernal A, Baev MV, Farrell M, Kurnasov OV, Daugherty MD, Mseeh F, Polanuyer BM, Campbell JW, Anantha S, Shatalin KY, Chowdhury SA, Fonstein MY, Osterman AL. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 2002;184:4555–72.
[25] Genschel U. Coenzyme a biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics. Mol Biol Evol 2004;21:1242–51.
[26] Daugherty M, Polanuyer B, Farrell M, Scholle M, Lykidis A, Crécy-Lagard V, Osterman A. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J. Biol. Chem, 2002;277:21431–9.
[27] Aghajanian S, Worrall DM. Identification and characterization of the gene encoding the human phosphopantetheine adenylyltransferase and dephospho-CoA kinase bifunctional enzyme (CoA synthase). Biochem J 2002;365:13–8.
[28] Zhyvoloup A, Nemazanyy I, Babych O, Panasyuk G, Pobigailo N, Vudmaska M, Naidenov V, Kukharenko O, Palchevskii S, Savinska L, Ovcharenko G, Verdier F, Valovka T, Fenton T, Rebholz H, Wang ML, Shepherd P, Matsuka G, Filonenko V, Gout IT. Molecular cloning of CoA Synthase.-The missing link in CoA biosynthesis. J. Biol.Chem, 2002;277:22107–10.
[29] Begley TP, Kinsland C,Strauss E. The biosynthesis of coenzyme A in bacteria.
Vitam Horm 2001;61:157–71.
[30] Chao-Sheng Cheng, Chih-Hao Chen, Yong-Chun Luo, Wen-Tin Chen, Shun-Ya Chang, Ping-Chiang Lyu, Mou-Chieh Kao, Hsien-Sheng Yin. Crystal structure and biophysical characterisation of Helicobacter pylori phosphopantetheine adenylyltransferase. Biochemical and Biophysical Research Communications 408 (2011) 356–361
[31] Z. Otwinowski and W. Minor. Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol. Macromol. Cryst. A 276 (1997)307–326.
[32] A. Vagin, A. Teplyakov, MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30 (1997) 1022–1025.
[33] G.N. Murshudov, A.A. Vagin, E.J. Dodson. Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystal. D 53, 240–255, 1997.
[34] P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics, Acta
Crystal. D 60, 2126–2132, 2004.
[35] van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ GROMACS: fast, flexible, and free. JComput Chem 26:1701–1718, 2005.
[36] Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690, 1984.
[37] Darden T, York D, Pedersen L. Particle mesh Ewald- an N. Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092, 1993.
[38] Hess B, Bekker H, Berendsen HJC, Fraaije JGEM LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472, 1997.
[39] Wallace AC, Laskowski RA, Thornton JM LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134, 1995.
[40] Yanshun Liu and David Eisenberg. 3D domain swapping: As domains continue to swap. Protein Science, 11:1285–1299, 2002.
[41] Frederic Rousseau, Joost Schymkowitz and Laura S. Itzhaki. Implications of 3D Domain Swapping for Protein Folding,Misfolding and Function. Protein Dimerization and Oligomerization in Biology, edited by Jacqui Matthews. 2008