研究生: |
施慧君 Shih, Hui-Chun |
---|---|
論文名稱: |
不同類型加減法文字題對低年級解題表現之研究 Different Kinds of Word Problems on First and Second Graders’ Problem-solving Performance |
指導教授: |
許慧玉
Hsu, Hui-Yu |
口試委員: |
陳建誠
Chen, Jian-Cheng 林勇吉 Lin, Yung-Chi |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 圖像表徵 、t檢定 、二因子變異數分析 |
外文關鍵詞: | image representation, t test, two-way ANOVA |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將加減法文字題分成三大類型與八種形式題型進行研究,研究目的在探討低年級學生在不同類型加減法文字題的解題情形與差異,並了解「圖像表徵」在不同類型文字題的影響。研究者蒐集新竹縣市三所國小低年級學生共436份問卷,以獨立樣本t檢定與二因子變異數分析圖像表徵對學生在不同類型加減法文字題解題表現的影響。研究結果顯示:
(一)低年級學生的解題表現不會因圖像表徵的輔助而有所差異,但不同類型的布題,是影響低年級學生解題表現的重要因素。低年級學生在「改變類」及「合併類」的解題表現均顯著優於「比較類」題型。
(二)二年級學生解不同形式題型時,解題表現會因圖形表徵的輔助而有差異,在「比較類—參照量未知」與「合併類—子集合未知」兩題型,「圖像表徵」有助於學生的解題表現,但在其他六類的題型下,「圖像表徵」則無顯著影響。
(三)「圖像表徵」需在難度較高的題型下,才能有助於學生解題;若題目的難度較低,圖像表徵對解題便無助益,甚至可能會造成解題的干擾。
(四)學生需掌握「圖像表徵」的意義,方能對學生解題有助益,反之,則圖像表徵可能會造成解題的困難。本研究中發現二年級學生對圖像表徵的理解能力優於一年級學生,可能是因為一年級學生對圖像表徵的應用尚未熟悉;而二年級學生對其較熟悉且已有概念,因此圖像表徵有助於二年級學生解題。
The research divides the word problems into different types of questions. The purpose of the research is to explore the problem-solving situation and differences of lower graders in different types of addition and subtraction word problems, and to understand the impact of "diagram representation" on different types of word problems. The researcher collected 436 questionnaires from students in three elementary schools in Hsinchu County and analyzed the effect of diagram representation on the performance of students in different types of addition and subtraction word problems with independent sample t test and two-way ANOVA.The research shows:
(1)The problem-solving performance of lower graders will not be different due to the help of diagram representation. However, different types of problems is an important factor that affects the performance of lower graders in solving problems. The performance of the lower graders in Change type and Merger type of problems is significantly better than in Comparative type.
(2) When the second graders solve different types of problems, with or without the aid of diagram representation will be different. Diagram representation is helpful to solve Comparative type and Merged type problems.
(3) Diagram representation can only help students to solve difficult problems. If the problem is simple, diagram representation may even become interference.
(4) Students must understand the meaning of diagram representation in order to help solve problems. Otherwise, diagram representation may cause difficulty in solving problems. In this study, it was found that the second graders had better understanding of diagram representation than the first graders. It may be that the first graders are not proficient in the application of diagram representation, but the second graders have already understood. Therefore, diagram representation is helpful for second graders to solve problems.
1. 方吉正(1995)。國小六年級學生速率文字題的解題研究。國立屏東師範學院初等教育研究所學位論文,未出版,屏東。
2. 王文科、王智弘(2014)。教育研究法。台北:五南圖書。
3. 古明峰(1999)。加減法文字題語意結構,問題難度及解題關係之探討。新竹師院學報,12,1 - 25。
4. 何縕琪、林清山(1994)。表徵策略教學對提升國小低解題正確率學生解題表現之效果研究。教育心理學報,27,259 - 279。
5. 吳明清(1991)。教育研究。台北:五南圖書。
6. 吳新華(1992)。數與計算的啟蒙。台北:五南圖書。
7. 呂玉琴(1988)。加減法文字題的分類,解題策略及影響因素。國民教育,28,17-29。
8. 李源順(2015)。數學這樣教:國小數學感教育。台北:五南圖書。
9. 杜佳真(1999)。數學文字題的表徵教學策略。科學教育研究與發展季刊,15,59 - 67。
10. 林碧珍(1991)。國小兒童對於乘除法應用問題之認知結構。新竹師院學報,5,221 - 288。
11. 林泓成(2010)。皮亞傑 (Piaget)的認知發展理論。閱讀與生活網址。取自:https://blog.xuite.net/kc6191/study/32807050-%E7%9A%AE%E4%BA%9E%E5%82%91%28Piaget%29%E7%9A%84%E8%AA%8D%E7%9F%A5%E7%99%BC%E5%B1%95%E7%90%86%E8%AB%96。
12. 洪郁雯、楊德清(2006)。具體表徵融入數學教學之探究。屏東教大科學教育, 23,30 - 38。
13. 涂金堂(2007)。國小學生數學文字題問題結構與數學解題表現之相關研究。屏東教育大學學報,26,101 - 136。
14. 翁嘉英(1988)。國小兒童解數學應用問題的認知歷程。國立台灣大學心理學研究所碩士論文,未出版,台北。
15. 張春興(1989)。張氏心理學辭典。台北:東華書局。
16. 教育部(2003)。國民教育九年一貫課程綱要。台北: 教育部。
17. 教育部(2018)。十二年國民基本教育課程綱要。台北: 教育部。
18. 陳立倫(2000)。兒童解答數學文字題的認知歷程。國立中正大學心理學研究所碩士論文,未出版,嘉義。
19. 黃秀玉(2008)。國小低年級學童在整數加減法概念之縱貫研究—模糊集群分析與次序理論的整合應用。國立台中教育大學數學教育學系在職進修教學碩士學位班論文,未出版,台中。
20. 黃家鳴(1997)。淺談數學概念表象在數學教學上的一些問題(上)。數學教育, 5,20 -23。
21. 蔣治邦、鍾思嘉(1991)。低年級學童加減概念的發展。教育與心理研究,14,35 - 68。
22. 蕭毓秀(2001)。國小學生時間文字題解題研究。國立臺北教育大學數理教育研究所學位論文,未出版,台北。
23. Baroody, A.,Baroody, A. J.,Coslick, R. T. (1998).Fostering children's mathematical power: An investigative approach to K-8 mathematics instruction.Routledge。
24. Branca, N. A. (1980). Problem solving as a goal, process, and basic skill.Problem solving in school mathematics, 1, 3-8.
25. Braselton, S., Decker, Barbara C. (1994). Using graphic organizers to improve the reading of mathematics.The Reading Teacher, 48(3), 276-281.
26. Carpenter, T. P. (1981). Initial instruction in addition and subtraction: A target of opportunity for curriculum development。Proceedings of the National Science Foundation Directors Meeting. Washington.
27. Carpenter, T. P., & Moser, J. M. (1982). The development of addition and subtraction problem-solving skills. Addition and subtraction: A cognitive perspective, 9-24.
28. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, NJ: Eribaum.
29. Fuson, K. C. (1992). Research on whole number addition and subtraction.
30. Gauss, C. F. (1800). Zur metaphysik der mathematik.Gauss (1863), 12.
31. Geary, D. F. (1944). Children's mathematical development: Research and practical applications. American Psychological Association.
32. Ginsburg, H. P., & Opper, S (1988). Piaget's theory of intellectual development. Prentice- Hall, Inc.
33. Gray, E., & Tall, D. (1993). Success and failure in mathematics: the flexible meaning of symbols as process and concept. Mathematics teaching, 142, 6 -10.
34. Greeno, J. G., & Hall, R. P. (1997). Practicing representation: Learning with and about representational forms. Phi Delta Kappan, 78, 361- 367.
35. Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics. Lawrence Erlbaum.
36. Marshall, S. P., Pribe, C. A. & Smith, J. D. (1987). Schema Knowledge Structures for Representing and Understanding Arithmetic Story Problems. First Year Technical Report.
37. Mayer, R. E. (1992). Thinking, problem solving, cognition.WH Freeman/Times Books/Henry Holt & Co.
38. Nesher, P., Greeno, J. G., & Riley, M. S. (1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics,13(4), 373-394.
39. Piaget, J. (1952). The child’s conception of number. New York: W. W. Norton.
40. Piaget, J. (1953). How children form mathematical concepts. Scientific American, 189(5), 74-79.
41. Polya, G. (2004). How to solve it: A new aspect of mathematical method(No.246). Princeton university press.
42. Riley, M. S., Greeno, J. G.,& Heller, J. I.(1983). Development of children’s problem- solving ability in arithmetic. In H. P. Ginberg (Ed.). The development of mathematical thinking, 153-196. New York: Academic Press.
43. Riley, M. S.,& Greeno, J. G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition and instruction, 5(1), 49-101.
44. Russell, B. (1993). Introduction to mathematical philosophy. Courier Corporation.
45. Snyder, R. F. (1998). A clinical study of three high school problem solvers. The High School Journal, 81 (3), 167-176.
46. Verschaffel, L., & De Corte, E. (1997). Word problems: A vehicle for promoting authentic mathematical understanding and problem solving in the primary school?