研究生: |
鄭進利 |
---|---|
論文名稱: |
利基為基礎之演化式粒子群演算法應用於數值最佳化問題 A Hybrid Niching-based Evolutionary PSO for Numerical Optimization Problems |
指導教授: | 葉維彰 |
口試委員: |
桑慧敏
賴鵬仁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | Particle swarm optimization 、mutation 、niching 、numerical optimization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
粒子群優化(PSO)是一個母體為基礎的優化算法,它具有簡單性和延展性。 PSO是一個典型的全域搜索之啟發式演算法; 然而,PSO在解決方案的開採能力(exploitation)和解的多樣性方面仍然有不足之處。有鑑於此,由人工細菌遺傳算法(PBGA)的啟發下,我們提昇解的多樣性,其藉由加入PBGA中染色體突變的過程並且進一步以利基為基礎的方法做修改後來保有解的多樣性,避免在搜索過程中過早收斂。我們簡稱該算法為基於利基之混合式演化粒子群演算法(NEPSO)。我們以大量的數值函數驗證所提出的演算法,其結果顯示NEPSO在大部分的驗證函數都能保有穩健性及有效性。
Particle swarm optimization (PSO) is a population-based optimization algorithm which has great potential because of its simplicity and malleability. PSO is a typical global searching heuristic, but there is still an insufficiency in PSO regarding solution exploitation and diversity. In view of this, inspired by the pseudo bacterial genetic algorithm (PBGA), we enhance the variety of solution exploitation by incorporating the PBGA process–chromosome mutation. In addition to this, a modified niching method is utilized to preserve the solution diversity, and to avoid premature convergence in search process. We call the proposed algorithm Niching-based Evolutionary PSO (NEPSO). The experimental results test several commonly used numerical benchmark functions, and show that NEPSO has very promising optimization performance.
[1] J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA, 1992.
[2] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
[3] R. Storn, K. Price, Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report, International Computer Science Institute, Berkley, 1995.
[4] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization 11 (1997) 341–359.
[5] K. Price, R. Storn, A. Lampinen, Differential Evolution a Practical Approach to Global Optimization, Springer Natural Computing Series, 2005.
[6] D. Karaboga, and B. Akay, A comparative study of Artificial Bee Colony algorithm, Applied Mathematics and Computation, vol. 214, pp. 108–132, 2009.
[7] M. Clerc and J. Kennedy, The particle swarm—explosion, stability andconver gence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, pp. 658-73, 2002.
[8] Y. Shi and R. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, 1999, pp. 1945–1950.
[9] T. Furuhashi, Y. Miyata, K. Nakaoka, and Y. Uchikawa, A new approach to genetic based machine learning for efficient finding of fuzzy rules, in Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag, vol. 1011, pp. 173-189, 1995.
[10] W. Sheng, X. Liu, and M. Fairhurst, A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection, IEEE Transactions on Knowledge and Data Engineering, vol. 20, pp. 868-879, 2008.
[11] Y. Shi and R. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, 1999, pp. 1945–1950.
[12] R. Eberhart and Y. Shi, Particle swarm optimization: developments, applications, and resources, in Proceedings of the 2001 Congress on, vol. 1, 2001, pp. 81–86.
[13] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
[14] V. Cutello, G. Nicosia, M. Pavone, G. Stracquadanio, Entropic divergence for population based optimization algorithms, in proceeding of IEEE Congress on Evolutionary Computation, 2010.
[15] Nawa, N.E., Hashiyama, T., Furuhashi, T., Uchikawa, Y., Fuzzy logic controllers generated by pseudo-bacterial genetic algorithm, in Proceedings of IEEE International Conference on Neural Networks, 1997, pp. 2408-2413.
[16] L. D. Davis, Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold, 1991.
[17] F.Herrera and J. L. Verdegay, Genetic Algorithms and Soft Computing, Heidelberg, Germany: Physica-Verlag, 1996.
[18] D. Corne, M. Dorigo, F. Glover, New Ideas in Optimization, McGraw-Hill, 1999.
[19] L. Chan, Y. Ming, N. Jing, Grid resource scheduling based on improved differential evolution algorithms, in Proceedings of Natural Computation Sixth International Conference, 2010.
[20] D. Karaboga, An idea based on honeybee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[21] D. Karaboga, B. Basturk Akay, C. Ozturk, in: Modeling Decisions for Artificial Intelligence, Lecture Notes in Computer Science, vol. 4617, pp. 318–329, 2007.
[22] D. Karaboga, B. Basturk Akay, An artificial bee colony (abc) algorithm on training artificial neural networks, in: 15th IEEE Signal Processing and Communications Applications, SIU 2007, Eskisehir, Turkiye, June, pp. 1–4.
[23] D. Karaboga, B. Basturk, in: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing, Lecture Notes in Computer Science, vol. 4529, pp.789–798, 2007.
[24] G. Chen ,W. Guo, and Y. Chen, A PSO-based intelligent decision algorithm for VLSI floor planning, Soft Computing, vol. 14, pp. 1329–1337, 2010.
[25] A. Ratnaweera, SK. Halgamuge, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Transactions on Evolutionary Computation , vol. 8, pp. 240–255, 2004.
[26] W. Guo, G. Chen, X. Fen, A new strategy of acceleration coefficients for particle swarm optimization, in Progress of the 10th international conference on computer supported cooperative work in design, vol. 5, 2006, pp. 72–76.
[27] M. Miwa, T. Furuhashi, M. Matsuzaki, S. Okuma, CMAC modeling using pseudo-bacterial genetic algorithm and its acceleration, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 1, 2001, pp. 250-254.
[28] Nawa, N.E., Furuhashi, T., A study on nonlinear model identification using Pseudo-Bacterial Genetic Algorithm, in Proceedings of International Conference on Neural Information Processing and Intelligent Information Systems, vol. 1-2, 1997 , pp. 408-411.
[29] Nawa, N.E., Hashiyama, T., Furuhashi, T., Uchikawa, Y., A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator, in Proceedings of IEEE International Conference on Evolutionary Computation, 1997, pp. 589-593.
[30] Nawa, N.E., Hashiyama, T., Furuhashi, T., Uchikawa, Y., Fuzzy logic controllers generated by pseudo-bacterial genetic algorithm with adaptive operator, in Proceedings of IEEE International Conference on Neural Networks, 1997, pp. 2408-2413.
[31] Hsieh, T.J., Cheng, C.L., and Yeh, W.C., “A Hybrid Niching-based Evolutionary PSO for Numerical Optimization Problems,” The IEEE International Conference on Computational Intelligence and Cybernetics, July 12-14, 2012, Bali, Indonesia.
[32] A. Petrowski, A Clearing Procedure as a Niching Method for Genetic Algorithms in Proceedings of IEEE Int’l Conf. Evolutionary Computation, 1996, pp. 798-803.
[33] W. Sheng, A. Tucker, and X. Liu, Clustering with Niching Genetic KMeans Algorithm, in Proceedings of Genetic and Evolutionary Computation Conference, 2004, pp. 162-173.
[34] D.O. Boyer, C.H. Martfnez, N.G. Pedrajas, Crossover operator for evolutionary algorithms based on population features, Journal of Artificial Intelligence Research, vol. 24, pp. 1–48, 2005.
[35] X. Yao, Y. Liu and G. Lin, Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation, vol. 3, pp. 82–102, 1999.
[36] H. Wang, Y. Liu, S. Y. Zeng, H. Li and C. H. Li, Opposition-based particle swarm algorithm with Cauchy mutation, in Proceedings of IEEE Congress on Evolutionary Computation, 2007, pp. 4750–4756.
[36] Y.-X. Wang, Z. -D. Zhao, R. Ren, Hybrid particle swarm optimizer with tabu strategy for global numerical optimization, IEEE Transactions on Evolutionary Computation., CEC 2007.