簡易檢索 / 詳目顯示

研究生: 王正飛
Wang, Cheng-Fei
論文名稱: 日常商品中微型塑膠及其吸附和生物累積暨毒性特性之研究
Study of Microplastics in Daily Commodities and their Adsorption, Bioaccumulation, and Toxicity Traits
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 余靖
Yu, Chin
趙奕姼
Chao, Ito
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 微型塑膠螢光呈色法塑膠老化生物急毒性測試
外文關鍵詞: microplastics, fluorescent stainning method, plastic aging, bio-acute toxicity test
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 塑膠為主的海洋垃圾為日益嚴重的全球性環境污染問題,近年來許多研究顯示海洋中的塑膠在裂解後,會形成不同形狀的微形塑膠,數量龐大,對海洋以及水生生態造成重大影響。根據美國海洋暨大氣總署定義,微型塑膠是指長度小於5 mm的塑膠碎片或顆粒。
    本研究分三部分。第一部份研究利用螢光呈色法,結合光學顯微鏡檢測日常商品中的微型塑膠,包含市售瓶裝水、食鹽、加水站與自來水,其結果可觀察到清楚易辨識的微型塑膠,多為纖維、顆粒及薄片等形狀。接著使用顯微共焦拉曼儀進一步鑑定出塑膠種類,其中以PP(聚丙烯)、PE(聚乙烯)等生活常見之塑膠為大宗。
    國際間目前尚無人體的微型塑膠每日容許攝取量標準,與對人體危害性的結論,第二部分因此開始探討微型塑膠對生物的影響,進行大型水蚤(Daphnia magna) 的累積代謝實驗。同時也模擬真實環境的狀況,設計實驗參數,進行人工塑膠老化,並且使用顯微共焦拉曼儀和飛行時間二次離子質譜儀分析其差異。整體結果為微型塑膠並無明顯急毒性,且於一般狀況下沒有明顯累積現象,暴露後24小時,水蚤體內已無觀察到微型塑膠。少部分暴露於高濃度組別的水蚤(約5%)出現體內聚集現象,因腸道堵塞而導致死亡。此外經分析後結果,老化的塑膠以PVC(聚氯乙烯)表面性質差異最大。
    第三部分則是進行微型塑膠吸附毒性物質實驗與生物急毒性測試,探討微型塑膠與環境中毒性物質間交互作用對生物的影響,初步結果顯示暴露於微型塑膠環境下的鄰苯二甲酸酯類DEHP及銅離子,對水蚤的毒性都有增加的趨勢,飛行時間二次離子質譜儀分析微型塑膠表面組成結果,說明電荷和凡得瓦力為主要機制。


    Plastic in ocean is an increasingly problem of globally environmental pollution. In recent years, many studies have shown plastic in ocean usually degraded to different-shape micro plastics (also known as microplastics) after being cracked or decomposed. It has a major impact on the marine and aquatic ecology. The US Oceanic and Atmospheric Administration has defined microplastics as plastic fragments or granules with length less than 5 mm

    This study is divided into three parts. The first part uses the fluorescent stainning method combined with an fluorescence mode microscope to investigate daily commodities, including bottled water, salt, and tap water. The results show that there are clearly identifiable microplastics, mostly in the shape of fibers, fragments and flakes. The confocal raman microscope was used to further identify the plastic type. The bulk of these particals are PP(polypropylene) and PE (polyethylene).

    Nowadays, there is no standard of daily intake of microplastics, and clear conclusion about its harm to human in the world. The second part therefore began to explore the effects of microplastics on organisms. We conducted bioaccumulation metabolism experiment on Daphnia magna, and performed artificial plastic aging process by simulating the condition of real environment. The overall result was that microplastics had no significantly acute toxicity, and there was no obvious accumulation phenomenon under normal condition. After exposure, no microplastics were observed in the Daphnia magna in 24 hours. A small percentage of Daphnia magna (about 5%) exposed to high-concentrationed groups showed aggregation in the body and died due to intestinal obstuction. In addition, aged PVC (polyvinyl chloride) have the largest difference in surface properties.

    The third part is to carry out microplastics adsorption experiments and biological acute toxicity tests to explore the effects of interaction between microplastics and harmful toxicants in the environment. The preliminary results show that phthalate DEHP and copper ions exposed to microplastic environment had an increasing tendency toward biotoxicity on Daphnia magna. The results of surface composition analysis by TOF-SIMS indicate that charge attraction and Van der Waals force as the main adsorption mechanisms.

    目錄 摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 日常商用品中微型塑膠的檢測 1 1-1 前言與研究動機 1 1-2 研究目的 2 1-3 實驗部分 3 1-3-1 樣品資訊 3 1-3-2 實驗藥品與設備 3 1-3-3 儀器原理 5 1-3-4 實驗方法 9 1-4 實驗結果與討論 12 1-5 結論與展望 22 第二章 微型塑膠生物累積代謝觀察 23 2-1 前言與研究動機 23 2-2 研究目的 26 2-3 實驗部分 26 2-3-1 大型蚤Daphnia magna 26 2-3-2 實驗藥品與設備 27 2-3-3 儀器原理 28 2-3-4 實驗方法 31 2-4 實驗結果與討論 35 2-5 結論與展望 53 第三章 微型塑膠吸附毒性測試 54 3-1 前言與研究動機 54 3-2 研究目的 55 3-3 實驗部分 55 3-3-1 實驗藥品與儀器 55 3-3-2 實驗方法 56 3-4 實驗結果與討論 62 3-5 結論與展望 71 第四章 總結與展望 72 參考文獻 73

    1. PlasticsEurope. (2015). An analysis of European plastics production, demand and waste data.
    2. Cooper, D. A.; Corcoran, P. L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of kauai, hawaii. Mar Pollut Bull. 2010. 60(5), 650-4.
    3. Cole, M.; Lindeque, P.; Halsband, C. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull. 2011. 62(12), 2588-97.
    4. Lambert, S.; Sinclair, C.; Boxall, A. Occurrence, degradation, and effect of polymer-based materials in the environment. Rev Environ Contam Toxicol. 2014. 227, 1-53.
    5. Sutton, R.; Mason, S. A.; Stanek, S. K. Microplastic contamination in the san francisco bay, california, USA. Mar Pollut Bull. 2016. 109(1), 230-235.
    6. Mason, S. A.; Kammin, L.; Eriksen, M. Pelagic plastic pollution within the surface waters of lake michigan, USA. Journal of Great Lakes Research. 2016. 42(4), 753-759.
    7. Naji, A.; Esmaili, Z.; Mason, S. A. The occurrence of microplastic contamination in littoral sediments of the persian gulf, iran. Environ Sci Pollut Res Int. 2017. 24(25), 20459-20468.
    8. Jiang, J. Q. Occurrence of microplastics and its pollution in the environment: A review. Sustainable Production and Consumption. 2018. 13, 16-23.
    9. Avio, C. G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar Environ Res. 2017. 128, 2-11.
    10. Lusher, A. L.; McHugh, M.; Thompson, R. C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the english channel. Mar Pollut Bull. 2013. 67(1-2), 94-9.
    11. Mathura, B.; Andrea, D. P. Preliminary observations of microplastics from beaches in the indian ocean. Indian Ocean Turtle News letter. 2016. 23. 13-16.
    12. Van Franeker, J. A.; Blaize, C.; Danielsen, J., Monitoring plastic ingestion by the northern fulmar fulmarus glacialis in the north sea. Environ Pollut. 2011. 159(10), 2609-15.
    13. Karami, A.; Golieskardi, A.; Keong, C. C. The presence of microplastics in commercial salts from different countries. Sci Rep. 2017. 7, 46173-46186.
    14. Yang, D.; Shi, H.; Li, L. Microplastic pollution in table salts from china. Environ Sci Technol. 2015. 49(22), 13622-7.
    15. Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One. 2018. 13(4), 1-18.
    16. Mason, S.A.; Welch, V. G.; Neratko, J. Synthetic polymer contamination in bottled water. Front Chem. 2018. 6, 407.
    17. Ribeiro-Claro, P.; Nolasco, M.; Araújo, M. C. Characterization of microplastics by raman spectroscopy, in Characterization and analysis of microplastics. Comprehensive Analytical Chemistry. 2017. 75, 119-151.
    18. 化粧品及個人清潔用品中含塑膠微粒材質之定性檢測方法.NIEA M907.00B
    19. Erni-Cassola, G.; Gibson, M. I.;Thompson, R. C. Lost, but found with nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 mum) in environmental samples. Environ Sci Technol. 2017. 51(23), 13641-13648.
    20. Miller, M. E.; Kroon, F. J.; Motti, C. A. Recovering microplastics from marine samples: A review of current practices. Mar Pollut Bull. 2017. 123(12), 6-18.
    21. George H. P.; David, W. P. Photobleaching in two-photon excitation microscopy. Biophysical Journal. 2000. 78, 2159-2162.
    22. Pierre, M. D.; Carteret, C.; Maschio, L. The raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. J Chem Phys. 2014. 140(16), 164509.
    23. Schymanski, D.; Goldbeck, C.; Humpf, H. U. Analysis of microplastics in water by micro-raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018. 129, 154-162.
    24. Lönnstedt, O. M.; Eklöv, P. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science. 2016. 305, 1213-1216.
    25. Karami, A.; Romano, N.; Galloway, T. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in african catfish (clarias gariepinus). Environ Res. 2016. 151, 58-70.
    26. Espinosa, C.; Beltran, J. M. G.; Esteban, M. A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ Pollut. 2018. 235, 30-38.
    27. Jovanovic, B.; Gokdag, K.; Guven, O. Virgin microplastics are not causing imminent harm to fish after dietary exposure. Mar Pollut Bull. 2018. 130, 123-131.
    28. Grigorakis, S.; Mason, S. A.; Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in goldfish (carassius auratus). Chemosphere. 2017. 169, 233-238.
    29. Kuhn, S.; Schaafsma, F. L.; Werven, B. V. Plastic ingestion by juvenile polar cod (boreogadus saida) in the arctic ocean. Polar Biol. 2018. 41(6), 1269-1278.
    30. Egbeocha, C. O.; Malek, S.; Emenike, C. U. Feasting on microplastics: Ingestion by and effects on marine organisms. Aquatic Biology. 2018. 27, 93-106.
    31. Sa, L. C.; Oliveira, M.; Ribeiro, F. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci Total Environ. 2018. 645, 1029-1039.
    32. 生物急毒性檢測方法-水蚤靜水式法. NIEA B901.14B

    33. Al-Jaibachi, R.; Cuthbert, R. N.; Callaghan, A. Up and away: Ontogenic transference as a pathway for aerial dispersal of microplastics. Biol Lett, 2018. 14(9).
    34. Belu, A. M.; Graham, D. J.; Castner, D. G. Time-of-flight secondary ion mass spectrometry: Techniques and applications for the characterization of biomaterial surfaces. Biomaterials. 2003. 24(21), 3635-3653.
    35. Thomas Stephan. (1999). TOF-SIMS in Cosmochemistry. Herbolzheim
    36. P. Bertrand. (1999). Static Secondary Ion Mass Spectrometry of Thin Organic Layers. Catholic University of Louvain.
    37. Sodhi, R. N. Time-of-flight secondary ion mass spectrometry (TOF-SIMS):-versatility in chemical and imaging surface analysis. Analyst. 2004. 129(6), 483-7.
    38. Mas, S.; Perez, R.; Roxana, M. P. Cluster tof-sims imaging: A new light for in situ metabolomics? Proteomics. 2008. 8(18), 3735-45.
    39. Vroom, R. J. E.; Koelmans, A. A.; Besseling, E. Aging of microplastics promotes their ingestion by marine zooplankton. Environ Pollut. 2017. 231(1), 987-996.
    40. Huffer, T.; Weniger, A. K.; Hofmann, T. Sorption of organic compounds by aged polystyrene microplastic particles. Environ Pollut. 2018. 236, 218-225.
    41. Gewert, B.; Plassmann, M. M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts. 2015. 17(9), 1513-21.
    42. 塑膠材質之聚氯乙烯定性篩檢方法.NIEA M906.00B
    43. Huang, Y. Y.; Beal, C. M.; Cai, W. W. Micro-raman spectroscopy of algae: Composition analysis and fluorescence background behavior. Biotechnol Bioeng. 2010. 105(5), 889-98.
    44. WHITE, J. R. Weathering of polymers: Mechanisms of degradation and stabilization, testing strategies and modelling. JOURNAL OF MATERIALS SCIENCE. 1994. 29, 584-613.
    45. Troitskii B. B.; Troitskaya, L. S. Mathematical models of initial stage of the thermal degradation of poly(vinyl chloride) - 3. The thermal degradation of poly ( vinyl chloride) in the presence of HCl. Eur. Poljm J. 1995. 31(6), 533-539.
    46. Jordao, R.; Casas, J.; Fabrias, G. Obesogens beyond vertebrates: Lipid perturbation by tributyltin in the crustacean daphnia magna. Environ Health Perspect. 2015. 123(8), 813-9.
    47. Mato, Y.; Isobe, T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 2001. 35, 318-324.
    48. Scopetani, C.; Cincinelli, A.; Martellini, T. Ingested microplastic as a two-way transporter for PBDEs in talitrus saltator. Environ Res. 2018. 167, 411-417.
    49. Brennecke, D.; Duarte, B.; Paiva, F. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science. 2016. 178, 189-195.
    50. Huang, P. C.; Chen, C. Y. Phthalate Exposure and Associated Health Effects in Taiwanese. Formosan J Med. 2010. 14, 169-180
    51. Wang, Y.; Wang, T.; Ban, Y. Di-(2-ethylhexyl) phthalate exposure modulates antioxidant enzyme activity and gene expression in juvenile and adult daphnia magna. Arch Environ Contam Toxicol. 2018. 75(1), 145-156.
    52. Jemec, A.; Horvat, P.; Kunej, U. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution. 2016. 219, 201-209.

    QR CODE