簡易檢索 / 詳目顯示

研究生: 朱立偉
Chu, Li-Wei
論文名稱: 鈦原子在矽(111)表面擴散過程與釓矽化物奈米結構之研究
Investigation on the Ti-Si(111)7x7 diffusion process and the nanostructures of GdSi1.7
指導教授: 陳力俊
Chen, Lih-Juann
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
中文關鍵詞: 鈦原子表面擴散釓矽化物
外文關鍵詞: Ti atom diffusion, GdSi1.7
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis is divided into two parts. One focuses on the diffusion process of Ti atom on Si(111), and the other part aims on the nanostructures of GdSi1.7. Ti atom diffusion on Si(111) was investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). The preferable adsorption sites and favorable diffusion paths are disclosed by STM and examined by DFT calculations. On the other hand, two distinct types of GdSi1.7 nanowires (NWs) were grown. The electrical properties of the epitaxial GdSi1.7 NWs were measured. The superb field emission properties were obtained on the free-standing GdSi1.7 NWs.


    本論文主要分成兩大部分:第一部分著重在鈦原子在Si(111)-7×7表面的擴散過程研究;另一部分著重在GdSi1.7 的奈米結構研究。第一部分利用掃描穿隧式電子顯微鏡(STM)以及密度泛函理論(DFT)來觀察並討論鈦原子在Si(111)表面的吸附與擴散過程。優選的吸附位置與較易發生的擴散路徑皆藉由STM 觀察得到,並由DFT 的計算結果得到驗證。另一方面,藉由不同的基板成長了兩種不同型態的GdSi1.7 的奈米線(NWs)。首先測量討論在Si(001)上磊晶成長的GdSi1.7 奈米線的電性及電阻率。而對於直立(free-standing)成長的GdSi1.7 奈米線也對其優異的場發射特性做了一系列的量測與討論。

    Contents i Acknowledgements v Abstract vi Chapter 1 Introduction 1.1 An Overview of Nanotechnology 1 1.2 Behaviors in Atomic Scale 4 1.2.1 Review of Si(111)-7×7 Surface 5 1.3 Nanostructures 9 1.3.1 Zero-dimensional (0D) Nanostructures 10 1.3.2 One-dimensional (1D) Nanostructures 10 1.4 Metal Silicides 13 1.4.1 Silicide Formation for Rare-Earth Metal/Si Systems 14 1.5 Rare-Earth Metal Silicide Nanowires 14 1.6 Scope and Aim of the Thesis 15 Chapter 2 Experimental Procedures 2.1 Introduction 17 2.2 Scanning Tunneling Microscopy (STM) 18 2.2.1 STM System 18 2.2.2 Tip Preparation 19 2.2.3 Evaporator System 21 2.2.4 Sample Preparation 21 2.2.5 Deposition and Annealing 22 2.3 Transmission Electron Microscopy (TEM) 23 2.3.1 Sample Preparation 23 2.3.2 Transmission Electron Microscope Examination 25 2.4 Dual-Beam Scanning Electron Microscope/ Focused Ion Beam (SEM/FIB) 26 Chapter 3 Diffusion Processes of Ti atom on Si(111)-7×7 Surface 3.1 Introduction 27 3.2 Experimental and Computational Details 29 3.3 Results and Discussion 32 3.3.1 Ti Adsorption Configurations 32 3.3.2 Diffusion Processes of Ti Atoms 39 3.4 Conclusions 45 Chapter 4 Resistivity Measurements of Self-Assembled Gadolinium Silicide Nanowires 4.1 Introduction 47 4.2 Experimental Procedures 48 4.3 Results and Discussion 49 4.3.1 Crystal Structures of GdSi1.7 49 4.3.2 Growth of NWs and Phase Determination 51 4.3.3 Electrical Properties 53 4.4 Conclusions 59 Chapter 5 Preparation of Free-Standing Gd Silicide Nanowires and Its Electrical Properties 5.1 Introduction 60 5.2 Experimental Procedures 62 5.3 Results and Discussion 64 5.3.1 Growth of NWs and Phase Determination 64 5.3.2 Field Emission Properties 68 5.3.3 Magnetic Properties 74 5.4 Conclusions 77 Chapter 6 Future Prospects 6.1 Dynamic Behavior of Ti Atom on Si(111) at the Initial Stage of Silicide Formation 78 6.2 Resistivity Measurements of GdSi1.7 NWs by AFM and In-situ Methods 78 6.3 Self-Organized Growth of Nanostructure Arrays on Strain-Relief Patterns 79 Chapter 7 Summary and Conclusions 7.1 Diffusion Processes of Ti Atom on Si(111)-7×7 Surface 81 7.2 Resistivity Measurements of Self-Assembled Gadolinium Silicide Nanowires 82 7.3 Preparation of Free-Standing Gd Silicide Nanowires and Its Electrical Properties 83 References Chapter 1 84 Chapter 2 94 Chapter 3 94 Chapter 4 98 Chapter 5 100 Chapter 6 104 Publication List 106  

    References
    Chapter 1
    1.1 K. K. Likharev and T. Claeson, “Single electronics,” Sci. Am. 266, 80-85 (1992).
    1.2 J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The signature of conductance quantization in metallic point contacts,” Nature 375, 767-769 (1995).
    1.3 P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933-937 (1996).
    1.4 C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
    1.5 G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic quantum dot solids,” Acc. Chem. Res. 32, 415-423 (1999).
    1.6 M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states,” Appl. Phys. Lett. 70, 105-107 (1996).
    1.7 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550-1552 (1999).
    1.8 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic transport in Y-junction carbon nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
    1.9 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire resonant tunneling diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
    1.10 R. W. Siegel, E. Hu, and M. C. Roco, “Nanostructure science and technology,” (Kluwer Academic Publishers, Boston, 1999), 1-362.
    1.11 J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics for terascale integration,” Science 293, 2044-2049 (2001).
    1.12 C. M. Lieber, “The incredible shrinking circuit,” Sci. Am. 285, 58-65 (2001).
    1.13 V. Balzani, A. Credi, and M. Venturi, “The bottom-up approach to molecular-level devices and machines,” Chem. Eur. J. 8, 5524-5532 (2002).
    1.14 K. E. Drexler, “Engines of creation, the coming era of nanotechnology,” Anchor Press, New York (1986).
    1.15 K. E. Drexler, “Machine-phase nanotechnology,” Sci. Am. 285, 74-75 (2001).
    1.16 S. P. Murarka, “Refractory silicides for integrated circuits,” J. Vac. Sci. Technol. 17, 775-792 (1980).
    1.17 S. P. Murarka, and D. B. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342-349 (1980).
    1.18 A. K. Sinha, “Refractory metal silicides for VLSI applications,” J. Vac. Sci. Technol. 19, 778-785 (1981).
    1.19 W. D. Buckley, and S. C. Moss, “Structure and electrical characteristics of epitaxial palladium silicide contacts on single crystal silicon and diffused p-n diodes,” Solid State Electron. 15, 1331-1337 (1972).
    1.20 G. J. van Gurp, and C. Langereis, “Cobalt silicide layers on Si. I. Structure and growth,” J. Appl. Phys. 46, 431-4307 (1975).
    1.21 P. A. Bennet, D. G. Cahill, and M. Copel, “Interstitial precursor to silicide formation on Si(111) - (7x7),” Phys. Rev. Lett. 73, 452-455 (1994).
    1.22 L. J. Chen, “Metal silicides: an integral part of microelectronics,” JOM, 57, September, 24-30 (2005).
    1.23 M. H. Wang, and L. J. Chen, “Simultaneous occurrence of multiphases in interfacial reactions of ultrahigh vacuum deposited Ti thin films on (111)Si,” Appl. Phys. Lett. 59, 2460-2462 (1991).
    1.24 K. Ishiyama, Y. Taga, and A. Ichiyama, “Reactive adsorption and diffusion of Ti on Si(001) by scanning tunneling microscopy,” Phys. Rev. B 51, 2380-2386 (1995).
    1.25 G. A. D. Briggs, D. P. Basile, G. Medeiros-Ribeiro, T.I. Kamins, D. A. A. Ohlberg, and R. S. Williams, “The incommensurate nature of epitaxial titanium disilicide islands on Si(001),” Surf. Sci. 457, 147-156 (2000).
    1.26 T. H. McDaniels, J. A. Venables, and P. A. Bennet, “Island nucleation in a reactive two-component system,” Phys. Rev. Lett. 87, 176105 (2001).
    1.27 H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett. 7, 885-889 (2007).
    1.28 K. Ezoe, H. Kuriyama, T. Yamamoto, S. Ohara, and S. Matsumoto, “Scanning tunnelling microscopy study of initial growth of titanium silicide on Si(111),” Appl. Surf. Sci. 130-132, 13-17 (1998).
    1.29 Z. He, M. Stevens, D. J. Smith, and P.A. Bennett, “Epitaxial titanium silicide islands and nanowires,” Surf. Sci. 524, 148-156 (2003).
    1.30 H. F. Hsu, L. J. Chen, H. L. Hsiao, and T. W. Pi, “Adsorption and switching behavior of individual Ti atoms on the Si(111)-7×7 surface,” Phys. Rev. B 68, 165403 (2003).
    1.31 T. Iida, M. Koma, Y. Ohwa, K. Shudo, S. Ohno, and M. Tanaka, “Observation of thermal growth of silicide on titanium-deposited silicon surfaces,” Surf. Sci. 601, 4444-4448 (2007).
    1.32 R. D. Mede and D. Vanderilt, “Adatom on Si(111) and Ge(111) surface,” Phys. Rev. B 40, 3905-3913 (1989).
    1.33 P. A. Bennett and M. W. Webb, “The Si(111)7×7 to “1×1” transition,” Surf. Sci. 104, 74-104 (1980).
    1.34 K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, “Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy,” J. Vac. Sci. Technol. A 3, 1502-1506 (1985).
    1.35 K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, “Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction,” Surf. Sci. 164, 367-392 (1985).
    1.36 A. Sengupta and J. Z. Zhang, “Handbook of nanophase and nanostructured materials: materials systems and applications I,” edited by Z. L. Wang, Y. Liu, and Z. Zhang (Kluwer Academic/ Plenum Publishers, New York, 2003), 3, 85-86.
    1.37 C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics using hybrid-molecular and mono-molecular devices,” Nature 408, 541-548 (2000).
    1.38 C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, “A [2]catenane-based solid state electronically reconfigurable switch,” Science 289, 1172-1175 (2000).
    1.39 M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular random access memory cell,” Appl. Phys. Lett. 78, 3735-3737 (2001).
    1.40 D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699-701 (1997).
    1.41 M. H. Devoret and R. J. Schoelkopf, “Amplifying quantum signals with the ingle-electron transistor,” Nature 406, 1039-1047 (2000).
    1.42 S. Iijima, “Helical microtube of graphitic carbon,” Nature 354, 56-58 (1991).
    1.43 C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22-28 (1999).
    1.44 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon,” Science 281, 973-975 (1998).
    1.45 Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes and carbide nanorods,” Science 285, 1719-1722 (1999).
    1.46 J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    1.47 Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowires building blocks,” Science 291, 851-853 (2001).
    1.48 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowires building blocks,” Science 294, 1313-1317 (2001).
    1.49 W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotubes-confined reaction,” Science 277, 1287-1289 (1997).
    1.50 J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060-2063 (2001).
    1.51 W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures,” Adv. Mater. 15, 526-529 (2003).
    1.52 P. G. Collins and P. Avouris, “Nanotubes for electronics,” Sci. Am. 283, 62-69 (2000).
    1.53 R. D. Meade and D. Vanderilt, “Adatom on Si(111) and Ge(111) surface”, Phys. Rev. B 40, 3905-3913 (1989).
    1.54 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66-69 (2001).
    1.55 M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the diameter and length of single crystal semiconductor nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).
    1.56 X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2001).
    1.57 G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418-2421 (2002).
    1.58 Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000).
    1.59 P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science 292, 706-709 (2001).
    1.60 M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the diameter and length of single crystal semiconductor nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).
    1.61 X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2001).
    1.62 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66-69 (2001).
    1.63 F. J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, D. Y. Petrovykh, H. Rauscher, and J. Viernow, “Nanowires by step decoration,” MRS Bulletin 24, 20-24 (1999).
    1.64 H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, “Synthesis and characterization of carbide nanorods,” Nature 375, 769-772 (1995).
    1.65 C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266, 1961-1966 (1994).
    1.66 R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89-90 (1964).
    1.67 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947-1949 (2001).
    1.68 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth,” Science 270, 1791-1794 (1995).
    1.69 S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor nanowires from oxides,” J. Mater. Res. 14, 4503-4507 (1999).
    1.70 R. Wehrmann, “High-temperature materials and technology,” edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967), 399-421.
    1.71 M. P. Lepselter and J. M. Andrews, “Ohmic contacts to semiconductors,” edited by B. Schwartz (Electrochem. Soc. Princeton, New Jersey, 1969), 159-183.
    1.72 J. M. Poate, K. N. Tu, and J. W. Mayer, “Thin films-interdiffusion and reactions,” (Wiley, New York, 1978).
    1.73 S. P. Murarka, “Interaction in metallization systems for integrated circuits,” J. Vac. Sci. Technol. B 2, 693-706 (1984).
    1.74 M. A. Nicolet, “Diffusion barriers in thin films,” Thin Solid Films 52, 415-443 (1978).
    1.75 P. S. Ho, “General aspects of barrier layers for very large scale integration applications,” Thin Solid Films 96, 301-316 (1982).
    1.76 K. N. Tu, “Shallow and parallel silicide contacts,” J. Vac. Sci. Technol. 19, 766-777 (1981).
    1.77 A. Y. C. Yu, “Electron tunneling and contact resistance of metal silicon contact barriers,” Solid State Electron. 13, 239-247 (1970).
    1.78 H. J. Geipel, Jr. N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, “Composite silicide gate electrodes-interconnections for VLSI device technologies,” IEEE Trans. Electron Devices, ED-27, 1417-1424 (1980).
    1.79 A. N. Saxena and D. Pramanik, “VLSI multilevel metallization,” Solid State Technol. 27, 93-100 (1984).
    1.80 T. Kawamura, D. Shinoda, and H. Muta, “Oriented growth of the interfacial PtSi layer or between Pt and Si,” Appl. Phys. Lett. 11, 101-103 (1967).
    1.81 R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and D. C. Jacobson, “Growth of single-crystal CoSi2 on Si(111)”, Appl. Phys. Lett. 40, 684-686 (1982).
    1.82 R. T. Tung, J. M. Gibson, J. M. Poate, “Growth of single-crystal epitaxial silicides on silicon by the use of template layers”, Appl. Phys. Lett. 42, 888-890 (1983).
    1.83 For a review, see R. T. Tung, J. M. Poate, J. C. Bean, J. M. Gibson, and D.C. Jacobson, “Epitaxial silicides”, Thin Solid Films 93, 77-80 (1982).
    1.84 L. J. Chen, H. C. Cheng, W. T. Lin, and M. S. Fung, “Epitaxial growth of refractory silicides on silicon”, Mater. Res. Soc. Symp. Proc. 37, 375-377 (1985).
    1.85 K. N. Tu, R. D. Thompson, and B. Y. Tsaur, “Low schottky-barrier height of rare-earth silicide on n-Si”, Appl. Phys. Lett. 38, 626-628 (1981).
    1.86 H. Norde, J. deSousa Pires, F. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, “The schottky-barrier height of the contacts between some rare-earth metals (and silicides) and p-type silicon”, Appl. Phys. Lett. 38, 865-867 (1981).
    1.87 E. I. Gladyshersky, Crystal Chemistry of Silicides and Germanides (Metallurgya, 1971).
    1.88 E. Parthe, Collog. Intern. CNRS 157, 195 (1967).
    1.89 F. A. d’Avitaya, A. Perio, J.-C. Oberlin, Y. Campidelli, and J. A. Chroboczek, “Fabrication and structure of epitaxial Er silicide films on (111)Si”, Appl. Phys. Lett. 54, 2198-2200 (1989).
    1.90 L. J. Chen and K. N. Tu, “Epitaxial growth of transition-metal silicides on silicon”, mater. Sci. Rep. 6, 53-55 (1991).
    1.91 G. Ye, M. A. Crimp, and J. Nogami, “Self-assembled Gd silicide nanostructures grown on Si(001),” J. Appl. Phys. 105, 104304 (2009).
    1.92 S. M. Hogga, A. Vantomme, and M.F. Wu, “Growth and electrical characterization of GdSi1.7 epilayers formed by channeled ion beam synthesis,” J. Appl. Phys. 91, 3664-3668 (2002).
    Chapter 2
    2.1 G. Binning and H. Rohrer, “Scanning tunneling microscopy”, Helv. Phys. Acta 55, 726-735 (1982).
    2.2 T. T. Sheng and C. C. Chang, “Transmission electron microscopy of cross section of large scale integrated circuits”, IEEE Trans, Electron Devices Ed-32, 531-535 (1976).
    Chapter 3
    3.1 O. Custance, I. Brihuega, J. Y. Veuillen, J. M. Gomez-Rodriguez, and A. M. Baro, “STM study of dynamical effects on submonolayer phases of Pb/Si(111),” Surf. Sci. 482-485, 878-885 (2001).
    3.2 K.-I. Tanaka, Z.-X. Xie, T. Egawa, and M. Aramata, “Dynamics of Sn and Zn atoms on a Si(111)-7×7 surface,” J. Mol. Catal. A Chem. 199, 19-26 (2003).
    3.3 I. Ostadal, P. Kocan, P. Sobotik, and J. Pudl, “Direct observation of long-range assisted formation of Ag clusters on Si(111)7×7,” Phys. Rev. Lett. 95, 146101 (2005).
    3.4 Ph. Avouris and I.-W. Lyo, “Probing and inducing surface chemistry with the STM: the reactions of Si(111)-7×7 with H2O and O2,” Surf. Sci. 242, 1-11 (1991).
    3.5 R. Martel, Ph. Avouris, and I.-W. Lyo, “Molecularly adsorbed oxygen species on Si(111)-(7×7): STM-induced dissociative attachment studies,” Science 272, 385-388 (1996).
    3.6 X. Xu, C. Wang, Z. Xie, X. Lu, M. Chen, and K. Tanaka, “Adsorbate lone-pair-electron stimulated charge transfer between surface dangling bonds: methanol chemisorption on Si(111)-7×7,” Chem. Phys. Lett. 388, 190-194 (2004).
    3.7 I. S. Hwang, M. S. Ho, and T. T. Tsong, “Dynamic behavior of Si magic clusters on Si(111) surfaces,” Phys. Rev. Lett. 83, 120-123 (1999).
    3.8 B. S. Swartzentruber, “Atomic-scale dynamics of atoms and dimers on Si(001) surface,” Surf. Sci. 386, 195-206 (1997).
    3.9 T. Sato, S. I. Kitamura, and M. Iwatsuki, “Surface diffusion of adsorbed Si atoms on the Si(111)-7×7 surface studied by atom-tracking scanning tunneling microscopy,” J. Vac. Sci. Technol. A 18, 960-964 (2000).
    3.10 B. S. Swartzentruber, “Kinetics of Si monomer trapping at steps and islands on Si(001),” Phys. Rev. B 55, 1322-1325 (1997).
    3.11 V. Brazdova and D. R. Bowler, “Si atom adsorption and diffusion on Si(110)- 1×1 and 2×1,” Phys. Rev. B 81, 165320 (2010).
    3.12 R. L. Lo, I. S. Hwang, M. S. Ho, and T. T. Tsong, “Diffusion of single hydrogen atoms on Si(111)-7×7 surfaces,” Phys. Rev. Lett. 80, 5584-5587 (1998).
    3.13 E. T. Foley, A. F. Kam, J. W. Lyding, and P. Avouris, “Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100),” Phys. Rev. Lett. 80, 1336-1339 (1998).
    3.14 S. Y. Bulavenko, P. V. Melnik, M. G. Nakhodkin, and A. Goriachko, “Investigation of hydrogen interaction with the Si(111)-7×7 surface by STM with Bi/W tips,” Surf. Sci. 600, 1185-1192 (2006).
    3.15 J. M. Gomez-Rodriguez, J. J. Sáenz, A. M. Baró, J.-Y. Veuillen, and R. C. Cinti, “Real-time observation of the dynamics of single Pb atoms on Si(111)-7×7 by scanning tunneling microscopy,” Phys. Rev. Lett. 76, 799-802 (1996).
    3.16 Z.-X. Xie and K.-I. Tanaka, “Tin atoms adsorbed on a Si(111)-7×7 surface,” Surf. Sci. 479, 26-32 (2001).
    3.17 O. Custance, I. Brihuega, J. M. Gomez-Rodriguez, and A. M. Baró, “Initial stages of Sn adsorption on Si(111)-7×7,” Surf. Sci. 482-485, 1406-1412 (2001).
    3.18 P. Sobotık , P. Kocan, and I. Ostadal, “Direct observation of Ag intercell hopping on the Si(111)-7×7 surface,” Surf. Sci. 537, L442-L446 (2003).
    3.19 R. Zhachuk, S. Teys, B. Olshanetsky, and S. Pereira, “Speed determination of single Sr adatoms moving within half unit cells,” Appl. Phys. Lett. 95, 061901 (2009).
    3.20 K. Ishiyama, Y. Taga, and A. Ichimiya, “Adsorption reactions of Ti/Si(001) by variable-temperature STM,” Surf. Sci. 357-358, 28-31 (1996).
    3.21 I. S. Hwang, R. L. Lo, and T. T. Tsong, “Site hopping of single chemisorbed oxygen molecules on Si(111)-7×7 surfaces,” Phys. Rev. Lett. 78, 4797-4800 (1997).
    3.22 S. Yoshida, T. Kimura, O. Takeuchi, K. Hata, H. Oigawa, T. Nagamura, H. Sakama, and H. Shigekawa, “Probe effect in scanning tunneling microscopy on Si (001) low-temperature phases,” Phys. Rev. B 70, 235411 (2004).
    3.23 P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. 136, B864-B871 (1964).
    3.24 G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558-561 (1993).
    3.25 J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865-3868 (1996).
    3.26 H. F. Hsu, L. J. Chen, H. L. Hsiao, and T. W. Pi, “Adsorption and switching behavior of individual Ti atoms on the Si(111)-7×7 surface,” Phys. Rev. B 68, 165403 (2003).
    3.27 K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, “Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction,” Surf. Sci. 164, 367-392 (1985).
    3.28 K. Cho and E. Kaxiras, “Diffusion of adsorbate atoms on the reconstructed Si(111) surface,” Surf. Sci. 396, L261-L266 (1998).
    3.29 G. Mills, H. Jonsson, and G. K. Schenter, “Reversible work transition state theory: application to dissociative adsorption of hydrogen,” Surf. Sci. 324, 305 (1995).
    Chapter 4
    4.1 C. Youn, K. Jungling, and W. W. Grannemann, “Microstructural and electrical properties of gadolinium silicide,” J. Vac. Sci. Technol. A 6(4), 2474-2481 (1988).
    4.2 G. Guizzetti, E. Mazzega, M. Michelini, F. Nava, A. Borghesi, and A. Piaggi, “Electrical and optical characterization of GdSi2 and ErSi2 alloy thin films,” J. Appl. Phys. 67, 3393-3399 (1990).
    4.3 G. Molnar, I. Gerocs, G. Peto, E. Zsoldos, and J. Gyulai, “Epitaxy GdSi1.7 on (111)Si by solid phase reaction,” Appl. Phys. Lett. 58, 249-250 (1991).
    4.4 J. C. Chen, G. H. Shen., and L. J. Chen, “Interfacial reactions of Gd thin films on (111) and (001)Si,” Appl. Surf. Sci. 142, 291-294 (1999).
    4.5 S. M. Hogga, A. Vantomme, and M.F. Wu, “Growth and electrical characterization of GdSi1.7 epilayers formed by channeled ion beam synthesis,” J. Appl. Phys. 91, 3664-3668 (2002).
    4.6 K. B. Chung, Y. K. Choi., M. H. Jang, M. Noh, and C. N. Whang, “Phase selective synthesis of gadolinium silicide films on Si(111)…using an interfacial SiO2 layer,” J. Appl. Phys. 94, 212-215 (2003).
    4.7 G. Ye, M. A. Crimp, and J. Nogami, “Self-assembled Gd silicide nanostructures grown on Si(001),” J. Appl. Phys. 105, 104304 (2009).
    4.8 J. Tersoff, and R.M. Tromp, “Shape transition in growth of strained islands: spontaneous formation of quantum wires,” Phys. Rev. Lett. 70, 2782-2785 (1993).
    4.9 D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, “Self-limiting growth of strained faceted islands,” Phys. Rev. Lett. 80, 5156-5159 (1998).
    4.10 D. Lee, D. K. Lim, S. S. Bae, S. Kim, R. Ragan, D. A. A. Ohlberg, Y. Chen, R. S. Williams, “Unidirectional hexagonal rare-earth disilicide nanowires on vicinal Si(100)-2×1,” Appl. Phys. A 80, 1311-1313 (2005).
    4.11 J.-F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J. Smith, “Signatures of quantum transport in self-assembled epitaxial nickel silicide nanowires,” Appl. Phys. Lett. 85, 281-283 (2004).
    4.12 H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, and S. Hasegawa, “In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110),” Appl. Phys. Lett. 86, 233108 (2005).
    4.13 Z. Li, S. Long, C. Wang, M. Liu, W. Wu, Y. Hao, and X. Zhao, “Resistivity measurements of self-assembled epitaxially grown erbium silicide nanowires,” J. Phys. D: Appl. Phys. 39, 2839-2842 (2006).
    4.14 A. F. Mayadas, and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1, 1382-1389 (1970).
    4.15 K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938)
    4.16 R. Ragan, S.K., X. Li, and R. S. Williams, “Platinum passivation of self-assembled erbium disilicide nanowire arrays on Si(001),” Appl. Phys. A 80, 1339-1342 (2005).
    Chapter 5
    5.1 G. L. Molna´, G. Peto¨, Z. Ve´rtesy, and E. Zsoldos, “Kinetic shape formation during Gd thin film and Si(100) solid phase,” Appl. Phys. Lett., 74, 1672-1674 (1999).
    5.2 B. C. Harrison, and J. J. Boland, “Real-time STM study of inter-nanowire reactions GdSi2 nanowires on Si(100),” Surf. Sci., 594, 93-98 (2005).
    5.3 C. Pescher, J. Pierre, A. Ermolieff, and C. Vannuffel, “Magnetic properties of gadolinium silicide thin films produced by different fabrication processes,” Thin Solid Films, 278, 140-143 (1996).
    5.4 P. Majumdar, and S. Kumar, “Anderson-Mott transition driven by spin disorder spin glass transition and magnetotransport in amorphous GdSi,” Phys. Rev. Lett., 90, 237202 (2003).
    5.5 N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, B. Igor, and S. T. Lee, “Fabrication and field emission of high-density silicon cone arrays,” Adv. Mater., 14, 1308-1311 (2002).
    5.6 H. S. Uh, and S. S. Park, “Investigation of various metal silicide field emitters and their application to field emission display,” J. Electrochem. Soc., 150, H12-H16 (2003).
    5.7 H. G. Duan, E. Q. Xie, and F. Ye, “Field emission from gadolinium silicide prepared by ion implantation with electron beam annealing,” J. Appl. Phys., 101, 064503 (2007).
    5.8 B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett., 86, 243103 (2005).
    5.9 Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett., 88, 043106 (2006).
    5.10 H. K. Lin, Y. F. Tzeng, C. H. Wang, N. H. Tai, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Ti5Si3 nanowire and its field emission property,” Chem. Mater., 20, 2429-2431 (2008).
    5.11 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission,” Appl. Phys. Lett., 86, 133112 (2005).
    5.12 Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 nanowires a potential field emitter and interconnect,” Nano Lett., 6, 1637-1644 (2006).
    5.13 R. H. Kodama, S. A. Makhlouf, A. E. Berkowitz, “Finite size effects in antiferromagnetic NiO nanoparticles,” Phys. Rev. Lett., 79, 1393-1396 (1997).
    5.14 E. L. SalaBas, A. Rumpleker, F. Kleitz, F. Radu, and F. Schuth, “Exchange anisotropy in nanocasted Co3O4 nanowires,” Nano Lett., 6, 2977-2981 (2006).
    5.15 L. D. Tung, K. H. J. Buschow, J. J. M. Franse, and N. P. Thuy, “Magnetic coupling between rare earth moments in some antiferromagnetic Gd compounds,” J. Magn. Magn. Mater., 154, 96-100 (1996).
    5.16 K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater., 16, 387-394 (2006).
    5.17 K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chem. Eur. J., 12, 7942-7497 (2006).
    5.18 J. C. Chen, G. H. Shen, and L. J. Chen, “Growth kinetics of amorphous interlayers by solid-state diffusion in ultrahigh vacuum deposited polycrystalline Gd thin films on (001)Si,” J. Appl. Phys., 84, 6083-6087 (1998).
    5.19 S. Lee, A. Shinde, and R. Ragan, “Morphological work function dependence of rare-earth disilicide metal nanostructures,” Nanotechnology, 20, 035701 (2009).
    5.20 S. A. Shakirova, and E. V. Serova, “Gd silicides formation heat treatment of coadsorbed Si and Gd ultrathin films on a W(1 1 1) surface,” Appl. Surf. Sci., 219, 363-369 (2003).
    5.21 Z. Liu, H. Zhang, L. Wang, and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil,” Nanotechnology, 19, 375602 (2008).
    5.22 C. I. Tsai, P. H. Yeh, C. Y. Wang, H. W. Wu, U. S. Chen, M. Y. Lu, W. W. Wu., L. J. Chen, and Z. L. Wang, “Cobalt silicide nanostructures: synthesis, electron transport, and field emission properties,” Cryst. Growth Des. 9, 4514-4518 (2009).
    5.23 X. Fang, Y. Bando, C. Ye, G. Shen, U. K. Gautem, C. Tang, and D. Golberg, “Si nanowire semisphere-like ensembles as field emitters,” Chem. Comm., 40, 4093-4095 (2007).
    5.24 C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma, and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays,” Physica E, 30, 169-173 (2005).
    5.25 V. Filip, D. Nicolaescu, M. Tanemura, and F. Okuyama, “Modeling the electron field emission from carbon nanotube films,” Ultramicroscopy, 89, 39-49 (2001).
    5.26 C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C, 113, 2286-2289 (2009).
    5.27 L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76, 2071-2072 (2000).
    5.28 Y. L. Chueh, L. J. Chou, J. Song, and Z. L. Wang, “Mechanical and magnetic properties of Ni-doped metallic TaSi2 nanowires,” Nanotechnology, 18, 145604 (2007).
    5.29 J. Choi, S. J. Oh, H. Ju, and J. Cheon, “Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect,” Nano Lett., 5, 2179-2183 (2005).
    5.30 P. Crespo, R. Litra´n, T. C. Rojas, M. Multigner, J.M. de la Fuente, J. C. Sa´nchez-Lo´pez, M. A. Garcı´a, A. Hernando, S. Penade´s, and A. Ferna´ndez, “Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles,” Phys. Rev. Lett. 93, 087204 (2004).
    5.31 L. Suber, D. Fiorani, G. Scavia, P. Imperatori, W. R. Plunkett, “Permanent magnetism in dithiol-capped silver nanoparticles,” Chem. Mater., 19, 1509-1517 (2007).
    Chapter 6
    6.1 Z. Li, S. Long, C. Wang, M. Liu, W. Wu, Y. Hao, and X. Zhao, “Resistivity measurements of self-assembled epitaxially grown erbium silicide nanowires,” J. Phys. D: Appl. Phys. 39, 2839-2842 (2006).
    6.2 H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, and S. Hasegawa, “In situ resistance measurements of epitaxial cobalt silicide nanowires on Si(110),” Appl. Phys. Lett. 86, 233108 (2005).
    6.3 D. D. Chambliss, R. J. Wilson and S. Chiang, “Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations”, Phys. Rev. Lett. 66, 1721-1724 (1991).
    6.4 S. Y. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen and A. N. Larsen, “Nanoscale structuring by misfit dislocations in Si1-xGex/Si epitaxial systems”, Phys. Rev. Lett. 78, 503-506 (1997).
    6.5 H. Brune, M. Giovannini, K. Bromann and K. Kern, “Self-organized growth of nanostructure arrays on strain-relief patterns”, Nature 394, 451-453 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE