簡易檢索 / 詳目顯示

研究生: 李冠儒
Li, Guan-Ru
論文名稱: 單原子金屬鐵修飾具腦皺褶表面之中空多孔碳球複合二氧化錳奈米線作為鋰硫電池硫正極基底材料
Iron single-atom decorated hollow porous carbon spheres of brain-fold-like surfaces composited with manganese dioxide nanowires as sulfur host materials for positive electrodes of lithium-sulfur batteries
指導教授: 呂世源
Lu, Shih-Yuan
口試委員: 胡啟章
Hu, Chi-Chang
李元堯
Li, Yuan-Yao
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 78
中文關鍵詞: 鋰硫電池多孔碳球單原子金屬催化劑奈米材料
外文關鍵詞: Li-S, porous, battery, catalyst
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池是研究上熱門的領域,由於鋰離子電池具有較高的理論電容量以及良好的循環穩定性,被視為優秀的儲能裝置,特別是使用鈷酸鋰或磷酸鋰鐵作為正極材料的鋰離子電池已被廣泛商業化。然而,這種嵌入嵌出型鋰離子電池所能儲存的鋰離子有限,導致電池能量密度受限。
    鋰硫電池由於擁有非常高的理論能量密度,加上成本低廉且對環境無汙染,是先進儲能系統的候選者。然而,它們的應用受到許多阻礙,包括可溶性多硫化物的穿梭效應(shuttling effect)、硫與多硫化鋰間緩慢的反應動力學轉換以及正極硫在充放電過程中的體積變化,導致電池壽命嚴重下降。在眾多已開發材料中,由於單原子金屬催化劑,有效催化反應並減少穿梭效應風險,被視為是傑出的材料。除了催化反應,利用材料如:硫化物、氧化物等具有吸附多硫化鋰的特性,可有效解決穿梭效應的發生。
    在本研究中,我們利用二氧化矽作為模板,將聚多巴胺包覆在其表面碳化後形成具腦皺褶表面之中空多孔碳球(Hollow Porous Carbon Sphere, HPCS),實現高比表面積,並在碳球表面以過渡金屬鐵做為單原子金屬來源將其改質修飾,形成HPCS@SA(Fe),結構中的單原子Fe可做為單原子催化劑(Single-Atom Catalysts, SACs),用以催化多硫化鋰的轉換反應提升電池效能,於充放電速率0.1 C下可以提供1134 mAh/g的比電容,在0.2、0.5、1和2 C下分別能提供:698、613、542以及327 mAh/g的電容量。另外,本研究也合成出α-MnO2奈米線來錨固多硫化鋰以減緩穿梭效應,提升活性物質硫利用率,維持循環穩定性。在吸附測試中證明α-MnO2奈米線可以迅速吸附多硫化鋰,減少穿梭效應的發生。長效方面在充放電速率1 C、300 圈下仍保有78.8 %的初始放電容量,每次容量損失率僅有0.071 %。
    最後,結合上述優點,將HPCS@SA(Fe)複合α-MnO2奈米線依不同比例混合。當HPCS@SA(Fe)與α-MnO2以1:2混合時,在0.1 C下與純HPCS@SA(Fe)相比,初始比電容量些微下降至1095 mAh/g,但在高倍率下表現較優異,在 1和2 C下分別能提供 504以及343 mAh/g的比電容量。1 C下的長效循環,在300圈後仍保有81.3 %的初始放電容量,每次容量損失率僅有0.062 %,具有優異的穩定性。


    Lithium-ion batteries draw extensive and intensive research attention because of their high theoretical capacities and excellent cycle stability, making them a prominent energy storage device. Particularly, lithium-ion batteries, using materials like lithium cobalt oxide or lithium iron phosphate for positive electrodes, have been widely commercialized. However, the intercalation/deintercalation based lithium-ion batteries are limited in their ability to store lithium ions, thus restricting their energy densities.
    Lithium-sulfur batteries, on the other hand, possess a very high theoretical energy density, and are cost-effective and environmental friendly, making them promising for advanced energy storage systems. However, their practical applications face several challenges, including the shuttle effect of soluble polysulfides, sluggish reaction kinetics between sulfur and lithium polysulfides, and volume changes in the sulfur cathode during charge-discharge cycles, leading to significant decay in battery life.
    Among the various materials developed, single-atom metal catalysts are considered outstanding because of their high catalytic efficiency toward conversion reaction between sulfur and lithium polysulfides to suppress the shuttle effect. Additionally, materials such as sulfides and oxides with adsorption capabilities for lithium polysulfides are effective in mitigating shuttle effects.
    In this study, we utilized silica as a template and coated it with polydopamine, followed by carbonization and subsequent etching removal of the silica template to form hollow porous carbon spheres (HPCS) of brain-fold-like surfaces. These HPCS were then implanted with transition metal iron as a source for formation of metal single-atoms, resulting in HPCS@SA(Fe) structures where Fe single-atoms act as single-atom catalysts (SACs). These SACs can catalyze the conversion reaction of lithium polysulfides to enhance battery performances. At a charge-discharge rate of 0.1 C, the battery exhibited an initial specific capacity of 1134 mAh/g, and specific capacities of 698, 613, 542, and 327 mAh/g were achieved at 0.2, 0.5, 1, and 2 C, respectively.
    Furthermore, α-MnO2 nanowires were synthesized to adsorb lithium polysulfides, thereby reducing shuttle effects and enhancing the utilization of sulfur active material for improved cycling stability. Adsorption tests demonstrated that α-MnO2 nanowires efficiently adsorb lithium polysulfides, mitigating shuttle effects. Long-term cycling at 1 C rate for 300 cycles retained 78.8% of the initial discharge capacity, with a small capacity loss rate of 0.071% per cycle.
    Finally, combining the advantages mentioned above, HPCS@SA(Fe) was composited with α-MnO2 nanowires in different ratios. When mixed at a ratio of 1:2, the composite exhibited a slightly reduced initial specific capacity of 1095 mAh/g at 0.1 C compared to pure HPCS@SA(Fe), yet demonstrated superior performances at higher rates, providing specific capacities of 504 and 343 mAh/g at 1 and 2 C, respectively. Long-term cycling at 1 C rate for 300 cycles maintained 81.3% of the initial discharge capacity, with a small capacity loss rate of 0.062% per cycle, showcasing excellent stability.

    目錄 摘要 i Abstract iii 致謝 v 目錄 vii 圖目錄 x 表目錄 xiv 第1章 緒論 1 1-1 前言 1 1-2 電化學反應機制 1 1-3 鋰離子電池 2 1-4 鋰硫電池 3 1-4-1 工作原理 3 1-4-2 電解液 5 第2章 文獻回顧 6 2-1 單原子催化劑應用與合成 6 2-2 以鐵作為單原子金屬之氮摻雜奈米碳管 7 2-3 以鈷作為單原子金屬之氮摻雜石墨烯 10 2-4 不同化合物對多硫化鋰吸附能力比較 12 2-5 空心多面體硫化鈷應用於鋰硫電池 14 2-6 研究動機 17 第3章 實驗方法與儀器 18 3-1 實驗藥品 18 3-2 實驗儀器 21 3-3 分析儀器 23 3-4 實驗步驟 26 3-4-1 具腦皺褶表面之二氧化矽球製備 26 3-4-2 具腦皺褶表面之中空多孔碳球HPCS製備 27 3-4-3 單原子金屬鐵修飾具腦皺褶表面之中空多孔碳球HPCS@SA(Fe)製備 28 3-4-4 α-MnO2奈米線製備 28 3-4-5 多硫化鋰吸附實驗 28 3-4-6 正極複合材料製備 29 3-4-7 電極片製作與鋰硫電池全電池組裝 29 3-4-8 電化學測試與分析 29 第4章 結果與討論 31 4-1 具腦皺褶表面之二氧化矽球及中空碳球(HPCS)材料鑑定與分析 31 4-2 單原子金屬鐵修飾具腦皺褶表面之中空多孔碳球HPCS@SA(Fe) 材料鑑定與分析 35 4-3 α-MnO2奈米線材料鑑定與分析材料鑑定與分析 44 4-4 多硫化鋰吸附測試 49 4-5 HPCS、HPCS@SA(Fe)及α-MnO2應用於鋰硫電池正極電化學測試及分析 51 4-6 HPCS@SA(Fe)與α-MnO2奈米線按不同重量比例複合之影像及應用於鋰硫電池正極電化學測試及分析 58 4-7 本研究與其他鋰硫電池文獻性能比較 69 第5章 結論 72 參考文獻 73

    1. Mishra, A., et al., Electrode materials for lithium-ion batteries. Materials Science for Energy Technologies, 2018. 1(2): p. 182-187.
    2. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
    3. Yoshino, A., Development of Lithium Ion Battery. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2000. 340(1): p. 425-429.
    4. Cheng, X.-B., et al., Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Advanced Materials, 2016. 28(15): p. 2888-2895.
    5. Bianchi, V., et al., Electrochemical investigation of the Li insertion–extraction reaction as a function of lithium deficiency in Li1−xNi1+xO2. Electrochimica Acta, 2001. 46(7): p. 999-1011.
    6. Chen, S., et al., Aluminum−lithium alloy as a stable and reversible anode for lithium batteries. Electrochimica Acta, 2021. 368: p. 137626.
    7. Dey, A.N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of The Electrochemical Society, 1971. 118(10): p. 1547.
    8. Xin, S., et al., Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017. 4(1): p. 54-70.
    9. Aurbach, D., et al., On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of The Electrochemical Society, 2009. 156(8): p. A694.
    10. Peled, E., et al., Rechargeable lithiumsulfur battery (extended abstract). Journal of Power Sources, 1989. 26(3): p. 269-271.
    11. Jin, B., J.-U. Kim, and H.-B. Gu, Electrochemical properties of lithium–sulfur batteries. Journal of Power Sources, 2003. 117(1): p. 148-152.
    12. Jung, Y. and S. Kim, New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochemistry Communications, 2007. 9(2): p. 249-254.
    13. Mikhaylik, Y.V. and J.R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society, 2004. 151(11): p. A1969.
    14. Rauh, R.D., et al., A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. Journal of The Electrochemical Society, 1979. 126(4): p. 523-527.
    15. Tian, H., et al., Single-atom catalysts for high-energy rechargeable batteries. Chemical science, 2021. 12(22): p. 7656-7676.
    16. Bruce, P.G., et al., Li–O2 and Li–S batteries with high energy storage. Nature Materials, 2012. 11(1): p. 19-29.
    17. Chen, Y., et al., Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018. 2(7): p. 1242-1264.
    18. Abdel-Mageed, A.M., et al., Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal–Organic Framework. Journal of the American Chemical Society, 2019. 141(13): p. 5201-5210.
    19. Wang, Y., et al., Manipulation of Edge-Site Fe–N2 Moiety on Holey Fe, N Codoped Graphene to Promote the Cycle Stability and Rate Capacity of Li–S Batteries. Advanced Functional Materials, 2019. 29(5): p. 1807485.
    20. Zhao, H., et al., Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021. 13(6): p. 7171-7177.
    21. Wang, J., et al., Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Materials, 2019. 18: p. 246-252.
    22. Du, Z., et al., Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2019. 141(9): p. 3977-3985.
    23. Wu, D.S., et al., Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Materials, 2018. 13: p. 241-246.
    24. Xu, H. and A. Manthiram, Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy, 2017. 33: p. 124-129.
    25. Yamashita, T. and P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449.
    26. Shao, Q.J., et al., Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A, 2020. 8(45): p. 23772-23783.
    27. Xie, X.Y., et al., MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. ADVANCED MATERIALS, 2021. 33(23).
    28. Chen, X.Y., et al., Synthesis and Electrochemical Property of FeOOH/Graphene Oxide Composites. FRONTIERS IN CHEMISTRY, 2020. 8.
    29. Peng, L., et al., Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem, 2021. 7(4): p. 1020-1032.
    30. Wang, J.W., et al., The role of MnO<sub>2</sub> crystal morphological scale and crystal structure in selective catalytic degradation of azo dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023. 30(6): p. 15377-15391.
    31. Li, W., et al., Boosting High-Rate Li–S Batteries by an MOF-Derived Catalytic Electrode with a Layer-by-Layer Structure. Advanced Science, 2019. 6(16): p. 1802362.
    32. Zhao, J., et al., Defect-Rich, Mesoporous Cobalt Sulfide Hexagonal Nanosheets as Superior Sulfur Hosts for High-Rate, Long-Cycle Rechargeable Lithium–Sulfur Batteries. The Journal of Physical Chemistry C, 2020. 124(23): p. 12259-12268.
    33. Kanoh, H., et al., Kinetic Properties of a Pt / Lambda ‐ MnO2 Electrode for the Electroinsertion of Lithium Ions in an Aqueous Phase. Journal of The Electrochemical Society, 1995. 142(3): p. 702.
    34. Chen, L., et al., N-Doped graphene embellished with Co­9S8 enable advanced sulfur cathode for high-performance lithium-sulfur batteries. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020. 44(6): p. 4961-4968.
    35. Yang, C.S., et al., One-step hydrothermal synthesis of Ni-Co sulfide on Ni foam as a binder-free electrode for lithium-sulfur batteries. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020. 565: p. 378-387.
    36. Wang, S.H., et al., CoS2 Nanospheres Anchored on 3D N-Doped Carbon Skeleton Derived from Bacterial Cellulose for Lithium-Sulfur Batteries. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021. 168(2).
    37. Gao, C., et al., Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. JOURNAL OF POWER SOURCES, 2019. 421: p. 132-138.
    38. Zhang, H.K., et al., A metal organic foam-derived zinc cobalt sulfide with improved binding energies towards polysulfides for lithium-sulfur batteries. CERAMICS INTERNATIONAL, 2020. 46(9): p. 14056-14063.
    39. Lao, M.M., et al., Homogeneous Sulfur-Cobalt Sulfide Nanocomposites as Lithium-Sulfur Battery Cathodes with Enhanced Reaction Kinetics. ACS APPLIED ENERGY MATERIALS, 2018. 1(1): p. 167-172.
    40. Sui, Z.Y., et al., Nitrogen-doped graphene aerogel as both a sulfur host and an effective interlayer for high-performance lithium-sulfur batteries. NANOTECHNOLOGY, 2017. 28(49).
    41. Zhang, W., et al., Three-dimensional nitrogen-doped hierarchical porous carbon derived from cross-linked lignin derivatives for high performance supercapacitors. ELECTROCHIMICA ACTA, 2018. 282: p. 642-652.
    42. You, Y., et al., Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. CHEMICAL ENGINEERING JOURNAL, 2019. 355: p. 671-678.
    43. Xu, M., et al., Promoting kinetics of polysulfides redox reactions by the multifunctional CoS/C/CNT microspheres for high-performance lithium-sulfur batteries. Applied Surface Science, 2020. 504: p. 144463.
    44. Li, Y., et al., Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020. 30: p. 250-259.
    45. Wang, J., et al., Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Materials, 2020. 28: p. 375-382.
    46. Wang, C.G., et al., Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A, 2020. 8(6): p. 3421-3430.

    QR CODE