簡易檢索 / 詳目顯示

研究生: 蔡政霖
Tsai, Zheng-Lin
論文名稱: 無序 S=1 海森堡鏈之強無序重整化群分析
Study of the S = 1 random Heisenberg chain by tree tensor network strong disorder renormalization group
指導教授: 陳柏中
Chen, Po-chung
口試委員: 林瑜琤
Lin, Yu-Cheng
黃靜瑜
Huang, Ching-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 38
中文關鍵詞: 強無序重整化群無序海森堡鏈隨機單態張量網路
外文關鍵詞: strong disorder renormalization group, spin-1, random Heisenberg chain, random singlet phase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文應用樹狀張量網路強無序重整化群來分析無序S=1 海森堡鏈之行為。耦合常數為均質的S=1 自旋鏈之基態為著名的Haldane 有能隙相態。這裡我們所探討的自旋鏈之鍵結為隨機無序的,其基態的能隙消失於強無序範疇。且當無序強度超過某一門檻,系統將進入隨機單態。強無序重整化群演算法搭配樹狀張量網路提供一可探索無序量子多體系統基態性質之高效能數值工具。利用此方法我們得以藉弦序參數找出介於無能隙Haldane 相態與隨機單態間之相變點,並進而求得在此相變點及隨機單態的一系列臨界指數;這些臨界指數分別關於端對端自旋關聯函數、整體自旋關聯函數、弦序參數。另外我們也藉能隙分佈探討能量及長度之關係。相較其他現有的數值計算結果,本論文的結果更吻合理論預測值。


    In this thesis, we use a tree tensor network strong disorder renormalization group method to study spin-1 random Heisenberg chains.
    The ground state of the clean spin-1 Heisenberg chain with uniform nearest-neighbor couplings is a gapped phase as known as the Haldane phase.
    Here we consider disordered chains with random couplings, in which the Haldane gap closes in the strong disorder regime.
    As the randomness strength is increased further and exceeds a certain threshold,
    the random chain undergoes a phase transition to a random singlet phase.
    The strong disorder renormalization group method formulated in terms of a tree tensor network provides an efficient tool for exploring ground state properties of disordered quantum many-body systems.
    Using this method we detect the quantum critical point between the gapless Haldane phase and the random singlet phase via the disorder-averaged string order parameter.
    We determine the critical exponents related to the average string order parameter, the average end-to-end correlation function and the average bulk spin-spin correlation function, both at the critical point and in the random singlet phase.
    Furthermore, we study energy-length scaling properties through the distribution of energy gaps for a finite chain.
    Our results are closer agreement with the theoretical predictions than what was found in previous numerical studies.

    摘要 Abstract 誌謝 Contents 1 Introduction -------------------------------------------------- 1 1.1 Disordered systems ------------------------------------------ 1 1.2 Numerical analysis ------------------------------------------ 1 2 Model and Methods --------------------------------------------- 3 2.1 S = 1 random Heisenberg chain ------------------------------- 3 2.2 Matrix product operator ------------------------------------- 5 2.3 Tree tensor network strong disorder renormalization group --- 7 3 String order parameter and Bulk correlation function --------- 13 3.1 String order parameter ------------------------------------- 13 3.2 Bulk correlation function ---------------------------------- 19 4 Distributions of energy gaps and End-to-end correlation function - 22 4.1 Distributions of energy gaps ------------------------------- 22 4.2 Distributions of end-to-end correlations ------------------- 29 4.3 End-to-end correlation function ---------------------------- 32 5 Conclusion and Outlook --------------------------------------- 34 Bibliographies ------------------------------------------------- 36

    [1] S. F. Edwards and P. W. Anderson, “Theory of spin glasses,” Journal of Physics F: Metal Physics, vol. 5, pp. 965–974, may 1975.
    [2] A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, “Strong frustration and dilution-enhanced order in a quasi-2d spin glass,” Phys. Rev. Lett., vol. 64, pp. 2070–2073, Apr 1990.
    [3] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, “Random quantum spin chains: A real-space renormalization group study,” Phys. Rev. Lett., vol. 75, pp. 4302–4305, Dec 1995.
    [4] A. Furusaki, M. Sigrist, P. A. Lee, K. Tanaka, and N. Nagaosa, “Random exchange heisenberg chain for classical and quantum spins,” Phys. Rev. Lett., vol. 73, pp. 2622–2625, Nov
    1994.
    [5] A. Furusaki, M. Sigrist, E. Westerberg, P. A. Lee, K. B. Tanaka, and N. Nagaosa, “Randomexchange quantum heisenberg chains,” Phys. Rev. B, vol. 52, pp. 15930–15942, Dec 1995.
    [6] P. Lajkó, E. Carlon, H. Rieger, and F. Iglói, “Disorder-induced phases in the s = 1 antiferromagnetic heisenberg chain,” Phys. Rev. B, vol. 72, p. 094205, Sep 2005.
    [7] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992.
    [8] S. Rapsch, U. Schollwöck, and W. Zwerger, “Density matrix renormalization group for disordered bosons in one dimension,” Europhysics Letters (EPL), vol. 46, pp. 559–564, jun 1999.
    [9] A. M. Goldsborough and R. A. Römer, “Using entanglement to discern phases in the disordered one-dimensional bose-hubbard model,” EPL (Europhysics Letters), vol. 111, p. 26004, jul 2015.
    [10] S.-k. Ma, C. Dasgupta, and C.-k. Hu, “Random antiferromagnetic chain,” Phys. Rev. Lett., vol. 43, pp. 1434–1437, Nov 1979.
    [11] C. Dasgupta and S.-k. Ma, “Low-temperature properties of the random heisenberg antiferromagnetic chain,” Phys. Rev. B, vol. 22, pp. 1305–1319, Aug 1980.
    [12] T. Hikihara, A. Furusaki, and M. Sigrist, “Numerical renormalization-group study of spin correlations in one-dimensional random spin chains,” Phys. Rev. B, vol. 60, pp. 12116– 12124, Nov 1999.
    [13] A. M. Goldsborough and R. A. Römer, “Self-assembling tensor networks and holography
    in disordered spin chains,” Phys. Rev. B, vol. 89, p. 214203, Jun 2014.
    [14] F. Haldane, “Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification
    with the o(3) nonlinear sigma model,” Physics Letters A, vol. 93, no. 9, pp. 464 – 468,
    1983.
    [15] F. D. M. Haldane, “Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically
    quantized solitons of the one-dimensional easy-axis néel state,” Phys. Rev. Lett.,
    vol. 50, pp. 1153–1156, Apr 1983.
    [16] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Rigorous results on valence-bond ground
    states in antiferromagnets,” Phys. Rev. Lett., vol. 59, pp. 799–802, Aug 1987.
    [17] M. den Nijs and K. Rommelse, “Preroughening transitions in crystal surfaces and valencebond
    phases in quantum spin chains,” Phys. Rev. B, vol. 40, pp. 4709–4734, Sep 1989.
    [18] S. Bergkvist, P. Henelius, and A. Rosengren, “Ground state of the random-bond spin-1
    heisenberg chain,” Phys. Rev. B, vol. 66, p. 134407, Oct 2002.
    [19] R. A. Hyman and K. Yang, “Impurity driven phase transition in the antiferromagnetic
    spin-1 chain,” Phys. Rev. Lett., vol. 78, pp. 1783–1786, Mar 1997.
    [20] C. Monthus, O. Golinelli, and T. Jolicoeur, “Percolation transition in the random antiferromagnetic
    spin-1 chain,” Phys. Rev. Lett., vol. 79, pp. 3254–3257, Oct 1997.
    [21] C. Monthus, O. Golinelli, and T. Jolicoeur, “Phases of random antiferromagnetic spin-1
    chains,” Phys. Rev. B, vol. 58, pp. 805–815, Jul 1998.
    [22] R. A. Hyman, K. Yang, R. N. Bhatt, and S. M. Girvin, “Random bonds and topological
    stability in gapped quantum spin chains,” Phys. Rev. Lett., vol. 76, pp. 839–842, Jan 1996.
    [23] K. Damle, “Griffiths effects in random heisenberg antiferromagnetic s = 1 chains,” Phys.
    Rev. B, vol. 66, p. 104425, Sep 2002.
    [24] K. Hida, “Density matrix renormalization group study of the haldane phase in random
    one-dimensional antiferromagnets,” Phys. Rev. Lett., vol. 83, pp. 3297–3300, Oct 1999.
    [25] G. Torlai, K. D. McAlpine, and G. De Chiara, “Schmidt gap in random spin chains,” Phys.
    Rev. B, vol. 98, p. 085153, Aug 2018.
    [26] Y.-J. Kao, Y.-D. Hsieh, and P. Chen, “Uni10: an open-source library for tensor network
    algorithms,” Journal of Physics: Conference Series, vol. 640, no. 1, p. 012040, 2015.
    [27] H. Ueda, H. Nakano, and K. Kusakabe, “Finite-size scaling of string order parameters
    characterizing the haldane phase,” Phys. Rev. B, vol. 78, p. 224402, Dec 2008.
    [28] T. Kennedy and H. Tasaki, “Hidden z2×z2 symmetry breaking in haldane-gap antiferromagnets,”
    Phys. Rev. B, vol. 45, pp. 304–307, Jan 1992.
    [29] H. Aschauer and U. Schollwöck, “Absence of string order in the anisotropic s = 2 heisenberg
    antiferromagnet,” Phys. Rev. B, vol. 58, pp. 359–365, Jul 1998.
    [30] D. S. Fisher, “Random antiferromagnetic quantum spin chains,” Phys. Rev. B, vol. 50,
    pp. 3799–3821, Aug 1994.
    [31] D. S. Fisher and A. P. Young, “Distributions of gaps and end-to-end correlations in random
    transverse-field ising spin chains,” Phys. Rev. B, vol. 58, pp. 9131–9141, Oct 1998.
    [32] T. Vojta, “Rare region effects at classical, quantum and nonequilibrium phase transitions,”
    Journal of Physics A: Mathematical and General, vol. 39, pp. R143–R205, may 2006.
    [33] H. Rieger and A. P. Young, “Griffiths singularities in the disordered phase of a quantum
    ising spin glass,” Phys. Rev. B, vol. 54, pp. 3328–3335, Aug 1996.
    [34] R. Juhász, Y.-C. Lin, and F. Iglói, “Strong griffiths singularities in random systems and
    their relation to extreme value statistics,” Phys. Rev. B, vol. 73, p. 224206, Jun 2006.
    [35] F. Iglói, R. Juhász, and H. Rieger, “Griffiths-mccoy singularities in the random transversefield
    ising spin chain,” Phys. Rev. B, vol. 59, pp. 11308–11314, May 1999.
    [36] J. Galambos, “The asymptotic theory of extreme order statistics,” 1987.
    [37] A. M. Goldsborough and G. Evenbly, “Entanglement renormalization for disordered systems,”
    Phys. Rev. B, vol. 96, p. 155136, Oct 2017.
    [38] C. Chatelain, “Improved matrix product operator renormalization group: application to
    the n-color random ashkin-teller chain,”
    [39] O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, “Infinite-randomness quantum
    ising critical fixed points,” Phys. Rev. B, vol. 61, pp. 1160–1172, Jan 2000.
    [40] Y.-C. Lin, F. Iglói, and H. Rieger, “Entanglement entropy at infinite-randomness fixed
    points in higher dimensions,” Phys. Rev. Lett., vol. 99, p. 147202, Oct 2007.
    [41] I. A. Kovács and F. Iglói, “Renormalization group study of the two-dimensional random
    transverse-field ising model,” Phys. Rev. B, vol. 82, p. 054437, Aug 2010.
    [42] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, “Critical behaviour of spin-s heisenberg
    antiferromagnetic chains: analytic and numerical results,” Journal of Physics A: Mathematical
    and General, vol. 22, pp. 511–529, mar 1989.

    QR CODE