研究生: |
陳志玟 Chen, Chih-Wen |
---|---|
論文名稱: |
一個使用二進位重組加權電容陣列的十位元連續漸進式類比數位轉換器 A 10-bit Successive-Approximation Analog-to-Digital Converter with a Binary-Scaled Recombination Weighting Capacitor Array |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
王毓駒
Wang, Yu-Jiu 吳仁銘 Wu, Jen-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 連續漸進式類比數位轉換器 、加權電容 |
外文關鍵詞: | SAR ADC, Binary-Scaled |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,5G通訊提供了更快的資料傳輸速度,以及更低的延遲,它應用到各個層面,家居、交通、醫療、農業,帶來了更便利的生活。而當中的類比數位轉換器是不可缺少的,他是大自然與電腦中間的橋樑,類比數位轉換器(ADC)的技術也持續不斷的在進步,往更高的解析度和速度發展。
本論文提出一個十位元每秒取樣一億四千萬次的連續漸進式類比數位轉換器(SAR ADC),採用二進位重組加權的電容陣列架構。使用台積電65奈米1P9M製程,在供應電壓為1.2 V,輸入訊號為69.453 MHz,接近尼奎斯特頻率之下,靜態模擬得到的數據DNL及INL的分別為 -1/0.996 LSB以及 -0.998/0.723 LSB。訊噪失真比(SNDR)為59.7 dB,有效位元數(ENOB)為9.625 bits, 平均消耗功率為4.117 mW,核心電路面積為0.0316平方公釐。
With the development of technology, 5G communication systems provide high data transmission speeds and low latency. It is applied to home, communication, medical treatment, and agriculture, bringing a more convenient life. The ADC is an essential block in the system. It’s an important bridge between the nature world and the computer. The technologies of ADC keep improving, toward to higher resolutions and better speeds.
A 10-bit, 140-MS/s successive-approximation analog-to-digital converter (SAR ADC) using a binary-scaled recombination weighting capacitor array is implemented in a TSMC 65 nm 1P9M CMOS technology. The supply voltage is 1.2 V. The DNL and INL are -1/0.996 LSB and -0.998/0.723 LSB respectively. The SNDR is 59.7 dB and the effective number of bits (ENOB) is 9.625 bits with input frequency is 69.453 MHz, near the Nyquist frequency. The power consumption in this work is 4.117 mW . The active area is 0.0316 mm2.
[1] S. W. Michael Chen, and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-m CMOS,” in IEEE Journal of Solid-State Circuits, VOL. 41, NO. 12, Dec. 2006.
[2] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC,” in IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April 2007.
[3] C. Liu, S. Chang, G. Huang and Y. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[4] V. Hariprasath, J. Guerber, S.-H. Lee and U.-K. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 620-621, April 2010.
[5] G. Huang, S. Chang, C. Liu and Y. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013.
[6] F. Kuttner, “A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS,” 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), 2002, pp. 176-177 vol.1.
[7] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang and C. H. Huang, “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation”, IEEE ISSCC Dig. Tech. Papers, pp. 386-387, 2010.
[8] C. Liu, C. Kuo and Y. Lin, “A 10 bit 320 MS/s Low-Cost SAR ADC for IEEE 802.11ac Applications in 20 nm CMOS,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2645-2654, Nov. 2015.
[9] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599–606, May 1999.
[10] D. Aksin, M. Al-Shyoukh, and F. Maloberti, "Switch Bootstrapping for Precise Sampling Beyond Supply Voltage", IEEE Journal of Solid State Circuits, pp. 1938-1943, Aug.2006.
[11] G. Huang and P. Lin, "A fast bootstrapped switch for high-speed high-resolution A/D converter," 2010 IEEE Asia Pacific Conference on Circuits and Systems, 2010, pp. 382-385.
[12] Jen-Huan Tsai, Hui-Huan Wang et al. “A 0.003 mm 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 50, NO. 6, JUNE 2015.
[13] L. Guo, M. Wang, X. Zhang and X. Wang, "A 10bit 40MS/s SAR ADC in 0.18μm CMOS with redundancy compensation," 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2017, pp. 2536-2540.
[14] G. Huang, S. Chang, Y. Lin, C. Liu and C. Huang, "A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS," 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2013, pp. 289-292.
[15] N. C. Chen, P. Y. Chou et al, “High-Density MOM Capacitor Array with Novel Mortise-Tenon Structure for Low-Power SAR ADC,” Proceedings of the Conference on Design, Automation & Test in Europe, pp. 1761–1766, Mar. 2017.
[16] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 314-605.
[17] J. Lu and J. Holleman, "A Low-Power High-Precision Comparator With Time-Domain Bulk-Tuned Offset Cancellation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 5, pp. 1158-1167, May 2013.
[18] A. Khorami, M. B. Dastjerdi and A. F. Ahmadi, "A low-power high-speed comparator for analog to digital converters," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 2010-2013.
[19] C. Liu, S. Chang, G. Huang and Y. Lin, "A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS process," 2009 Symposium on VLSI Circuits, 2009, pp. 236-237.
[20] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink and B. Nauta, "A 10-bit Charge-Redistribution ADC Consuming 1.9 uW at 1 MS/s," in IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, May 2010.