簡易檢索 / 詳目顯示

研究生: 陳崑約
論文名稱: 以二維流體模型模擬分析電感耦合式電漿源之電漿特性均勻度之研究
Parametric study of Inductively-Coupled plasma discharges by Two dimensional Fluid Model
指導教授: 柳克強
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 108
中文關鍵詞: 電感耦合式電漿源二維流體模型電漿特性均勻度
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前的半導體閘極尺寸越做越小的情況之下,要如何去精確的蝕刻出我們所希望的圖形是一件非常重要的議題,本論文將探討並分析ICP電漿源之結構與電漿條件對於電漿環境之影響,研究之方法為利用電腦模擬的方式去分析各參數對於電漿環境以及晶圓通量之影響。
    在本論文中,將分析目前業界所使用之ICP電漿源,其包括獨立控制內外線圈功率(電流)、內外進氣流量以及晶圓內外圈溫度控制的特性,而本論文將研究獨立控制線圈功率與內外進氣流量對於電漿環境以及晶圓通量有何影響。由模擬的結果可以得知增加外線圈電流,並且降低內線圈電流將會使得氯離子通量均勻度得到改善,並且在增加外線圈電流時,可以很明顯的看到氯原子通量均勻度得到較大的改善,並且功率也得到很大的提升(相較於改變內線圈電流),為了討論改變內外線圈電流對於蝕刻率的影響,本論文使用Moshe Sarfaty由實驗所推出的蝕刻經驗公式計算蝕刻率,由計算的結果得到與離子通量均勻度相同的趨勢,即增加外線圈電流、降低內線圈電流將使蝕刻均勻度得到提升。此外模擬計算亦發現電漿特性隨進氣位置不同而改變,若從腔體中央進氣,將會使得氯離子通量隨著晶圓徑向位置的增加而變大,分子離子部分則是相反。若氣體從腔體側上方進氣,此時氯離子通量隨著晶圓徑向位置的變大而降低,分子離子通量則是變大;在離子能量部分,則可以發現若是從腔體中央進氣將會使得離子能量較高,但均勻度較差,導致了最後的蝕刻結果均勻度也很差,但是若是配合上雙進氣口的條件,則會發現到內外氣體流速為75 sccm:25 sccm時,可以得到較均勻的離子能量分佈,進而改善蝕刻均勻度。
    總而言之,本研究之結果顯示,適當調變內外線圈電流以及內外進氣流量比例,將可以使得離子通量以及能量均勻度得到控制,進而增加蝕刻均勻度。


    第一章 簡介 2 1.1 研究背景 2 1.2 研究動機 3 1.3 研究目的 4 第二章 基本原理 6 2.1 電漿基本原理 6 2.2 電漿加熱機制 7 2.3 電感耦合式電漿源原理 8 2.4 電漿蝕刻機制 10 第三章 文獻回顧 14 3.1 混合式模組(HPEM) 14 3.2 流體模型 25 3.3 實驗結果 29 3.4 結論 33 第四章 二維電漿流體模型 35 4.1 電漿流體模型簡介 35 4.2 CFD-ACE+電漿流體模擬 37 4.2.1 CCP模式 38 4.2.2 ICP模式 42 4.3 邊界條件 43 4.4 數值方法 46 第五章 模擬結果與分析 49 5.1 基本參數設定 49 5.2 半穩態反應對於ICP模擬結果之影響 51 5.3 線圈位置對電漿以及通量均勻度所造成的影響 55 5.4 腔體高度對電漿以及通量均勻度所產生的影響 61 5.5 晶圓偏壓對通量均勻度所產生的影響 71 5.6 線圈電流對電漿以及通量均勻度所產生的影響 78 5.7 進氣口位置對於電漿以及通量均勻度之影響 90 第六章 結論 101 附錄 A 氯氣之反應式確認 103 附錄 B 蝕刻率的計算方式 105 附錄 C CFD-ACE+程式使用之注意事項 106 參考文獻 108

    [1] A. J. L. M. A. Lieberman, Principles of Plasma Discharges and Materials Processing. New York: Wiley-Interscience, 1994.
    [2] 柳克強, "電漿實驗與實驗設計方法上課講義," 2005.
    [3] 張正宏, "在大型積體電路製造中電感耦合式電漿源之先進蝕刻製程控制," 國立清華大學工程與系統科學系博士論文, 2003.
    [4] R. J. Hoekstra and M. J. Kushner, "Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors," Journal of Applied Physics, vol. 79, pp. 2275-2286, Mar 1 1996.
    [5] D. B. Hash, D. Bose, M. V. V. S. Rao, B. A. Cruden, M. Meyyappan, and S. P. Sharma, "Impact of gas heating in inductively coupled plasmas," Journal of Applied Physics, vol. 90, pp. 2148-2157, Sep 1 2001.
    [6] M. J. Kushner, W. Z. Collison, M. J. Grapperhaus, J. P. Holland, and M. S. Barnes, "A three-dimensional model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil properties, and comparison to experiments," Journal of Applied Physics, vol. 80, pp. 1337-1344, Aug 1 1996.
    [7] P. L. G. Ventzek, M. Grapperhaus, and M. J. Kushner, "Investigation of Electron Source and Ion Flux Uniformity in High Plasma-Density Inductively-Coupled Etching Tools Using 2-Dimensional Modeling," Journal of Vacuum Science & Technology B, vol. 12, pp. 3118-3137, Nov-Dec 1994.
    [8] M. J. Grapperhaus and M. J. Kushner, "A semianalytic radio frequency sheath model integrated into a two-dimensional hybrid model for plasma processing reactors," Journal of Applied Physics, vol. 81, pp. 569-577, Jan 15 1997.
    [9] W. Z. Collison, T. Q. Ni, and M. S. Barnes, "Studies of the low-pressure inductively-coupled plasma etching for a larger area wafer using plasma modeling and Langmuir probe," Journal of Vacuum Science & Technology A, vol. 16, pp. 100-107, Jan-Feb 1998.
    [10] S. Tinck, W. Boullart, and A. Bogaerts, "Simulation of an Ar/Cl-2 inductively coupled plasma: study of the effect of bias, power and pressure and comparison with experiments," Journal of Physics D-Applied Physics, vol. 41, pp. -, Mar 21 2008.
    [11] D. Bose, D. Hash, T. R. Govindan, and M. Meyyappan, "Modelling of inductively coupled plasma processing reactors," Journal of Physics D-Applied Physics, vol. 34, pp. 2742-2747, Sep 21 2001.
    [12] M. H. Khater and L. J. Overzet, "Chlorine plasma and polysilicon etch characterization in an inductively coupled plasma etch reactor," Plasma Sources Science & Technology, vol. 13, pp. 466-483, Aug 2004.
    [13] M. H. Khater and L. J. Overzet, "A new inductively coupled plasma source design with improved azimuthal symmetry control," Plasma Sources Science & Technology, vol. 9, pp. 545-561, Nov 2000.
    [14] 江弘棋, "應用二維數值模擬以改善電漿顯示器之發光效率," 國立清華大學工程與系統科學系電漿物理組碩士論文, 2004.
    [15] ESI-Group, "CFD-ACE+ Modules Manual," 2007.
    [16] ESI-Group, "chemical database."
    [17] D. P. Lymberopoulos and D. J. Economou, "2-Dimensional Simulation of Polysilicon Etching with Chlorine in a High-Density Plasma Reactor," Ieee Transactions on Plasma Science, vol. 23, pp. 573-580, Aug 1995.
    [18] M. V. Malyshev and V. M. Donnelly, "Diagnostics of inductively coupled chlorine plasmas: Measurement of Cl-2 and Cl number densities," Journal of Applied Physics, vol. 88, pp. 6207-6215, Dec 1 2000.
    [19] J. Johannes, T. Bartel, G. A. Hebner, J. Woodworth, and D. J. Economou, "Direct simulation Monte Carlo of inductively coupled plasma and comparison with experiments," Journal of the Electrochemical Society, vol. 144, pp. 2448-2455, Jul 1997.
    [20] M. V. Malyshev, V. M. Donnelly, A. Kornblit, and N. A. Ciampa, "Percent dissociation of Cl-2 in inductively coupled, chlorine-containing plasmas," Journal of Applied Physics, vol. 84, pp. 137-146, Jul 1 1998.
    [21] C. Lee and M. A. Lieberman, "Global-Model of Ar, O-2, Cl-2, and Ar/O-2 High-Density Plasma Discharges," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 13, pp. 368-380, Mar-Apr 1995.
    [22] S. C. Deshmukh and D. J. Economou, "Remote Plasma-Etching Reactors - Modeling and Experiment," Journal of Vacuum Science & Technology B, vol. 11, pp. 206-215, Mar-Apr 1993.
    [23] P. Subramonium and M. J. Kushner, "Two-dimensional modeling of long-term transients in inductively coupled plasmas using moderate computational parallelism. II. Ar/Cl-2 pulsed plasmas," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 20, pp. 325-334, Mar-Apr 2002.
    [24] J. D. Bukowski, D. B. Graves, and P. Vitello, "Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles," Journal of Applied Physics, vol. 80, pp. 2614-2623, Sep 1 1996.
    [25] M. Sarfaty, C. Baum, M. Harper, N. Hershkowitz, and J. L. Shohet, "Real-time determination of plasma etch-rate selectivity," Plasma Sources Science & Technology, vol. 7, pp. 581-589, Nov 1998.
    [26] 林宜欣, "交流型電漿顯示器三維數值模擬," 國立清華大學工程與系統科學系電漿物理組碩士論文, 2006.
    [27] ESI-Group, "CFD-ACE+ User Manual," 2007.
    [28] M. W. Kiehlbauch and D. B. Graves, "Effect of neutral transport on the etch product lifecycle during plasma etching of silicon in chlorine gas," Journal of Vacuum Science & Technology A, vol. 21, pp. 116-126, Jan-Feb 2003.
    [29] W. Arden, "Future semiconductor material requirements and innovations as projected in the ITRS 2005 roadmap," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 134, pp. 104-108, Oct 25 2006.
    [30] W. Z. Collison and M. J. Kushner, "Ion drag effects in inductively coupled plasmas for etching," Applied Physics Letters, vol. 68, pp. 903-905, Feb 12 1996.
    [31] M. J. Cooke and G. Hassall, "Low-pressure plasma sources for etching and deposition," Plasma Sources Science & Technology, vol. 11, pp. A74-A79, Aug 2002.
    [32] T. W. Kim, S. J. Ullal, V. Vahedi, and E. S. Aydil, "An on-wafer probe array for measuring two-dimensional ion flux distributions in plasma reactors," Review of Scientific Instruments, vol. 73, pp. 3494-3499, Oct 2002.
    [33] A. M. Efremov, D. P. Kim, and C. I. Kim, "Inductively coupled Cl-2/Ar plasma: Experimental investigation and modeling," Journal of Vacuum Science & Technology A, vol. 21, pp. 1568-1573, Jul-Aug 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE