簡易檢索 / 詳目顯示

研究生: 簡鈺玲
Chien, Yu Ling
論文名稱: 基於中國餘式定理的影像分享及還原
Image Sharing and Recovering Based on Chinese Remainder Theorem
指導教授: 陳朝欽
Chen, Chaur Chin
口試委員: 黃仲陵
Huang, Chung Lin
張隆紋
Chang, Long Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 17
中文關鍵詞: 資訊安全中國餘式定理
外文關鍵詞: Information security, Chinese remainder theorem
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網路普及的時代下,資訊安全已成為人們不可忽略的重要議題。為了防止資訊被一人獨佔,如何分享秘密訊息給參與者將是很重要的議題。透過(k,n)門檻的技巧得知,我們把秘密資訊分散在n張子影像,並由n個參與者保管。只要任意收集k張或以上的子影像,便可還原我們的原始資訊。反之,少於k張子影像則無法獲得足夠的資訊來還原秘密影像。
    在此篇論文中,我們經由分析Ulutas [Ulut2009]的方法及熟悉中國餘式定理後,提出一個新方法來實作影像分享及還原系統。跟其他方法相比,此篇的方法較精簡之外,也能確保原本的秘密影像不會造成失真。如此一來除了確保祕密資訊不被外人洩漏外,也能保留資訊完整性。


    According to the success of the Internet, Information security becomes an important issue to the human beings. To avoid the information is carried by only a single individual, how to share the secret information to the participants would be an important subject. According to the (k,n)-threshold scheme, the data are partitioned into n shadows which are distributed to n participants. By collecting at least k out of n shadows, we can completely recover the original data. Otherwise, we could not recover the original data.
    We propose a new method to improve the implementation method of Ulutas [Ulut2009] based on Chinese remainder theorem in this thesis. The advantage of our method in this thesis is that we not only simplify the method, but also guarantee the recovered image would not get distorted. Experiments for three color images are provided for demonstration.

    Chapter 1 Introduction ------------------------------------ ---1 Chapter 2 Background Review --------------------------------3 2.1 Secret Image Sharing Based on Thien and Lin [Thie2002] ---3 2.2 Chinese Remainder Theorem [Web01] ----------------------5 2.3 Secret Image Sharing Based on Ulutas[Ulut2009] -----------5 2.3.1 Sharing part ----------------------------------------------6 2.3.2 Recovering part ------------------------------------------6 Chapter 3 Proposed Image Sharing Method ------------------8 3.1 The Proposed Image Sharing Method -----------------------8 3.2 The Proposed Image Recovering Method -------------------9 3.3 Discussion -------------------------------------------------10 Chapter 4 Experimental Results ------------------------------11 Chapter 5 Conclusion ----------------------------------------15 References ------------------------------------------------------16

    [Asmu1983] C. Asmuth and J. Bloom, “A Modular Approach to Key Safeguarding,” IEEE Trans. on Information Theory, Vol. 29, No. 2, 208-210, 1983.
    [Chua2016] T.W. Chuang, C.C. Chen, and Y.L. Chien “Image Sharing and Recovering Based on Chinese Remainder Theorem”, to appear, 2016.
    [Chen2005] C.C. Chen, W.Y. Fu, and C.C. Chen. "A Geometry-Based Secret Image Sharing Approach," Proceedings of Image and Vision Computing, Dunedin, New Zealand, 428-431, 2005.
    [Chiu2011] P.L. Chiu and K.H. Lee. "A simulated annealing algorithm for general threshold visual cryptography schemes," IEEE Transactions on Information Forensics and Security, Vol. 6, No. 3, 992-1001, 2011.
    [Hide1999] K. Hidenori, and T. Hatsukazu "Image size invariant visual cryptography," IEICE transactions on fundamentals of electronics, communications and computer sciences, Vol. 82, No. 10, 2172-2177, 1999.
    [Kand2011] S. Kandar and B.C. Dhara, “k-n Secret Sharing Visual Cryptography Scheme on Color Image using Random Sequence,” International Journal of Computer Applications, Vol. 25, No. 11, 2011.
    [Luka2004] R. Lukac, K.N. Plataniotis, and A.N. Venetsanopoulos “A {k, n}-Secret Sharing Scheme for Color Images,” Computational Science, Vol. 3039, pp. 72-79, 2004.
    [Sham1979] A. Shamir, "How to share a secret." Communications of the ACM, Vol. 22, No. 11, 612-613, 1979.
    [Shyu2008] S.J. Shyu and Y.R. Chen. "Threshold secret image sharing by Chinese Remainder Theorem." IEEE Asia-Pacific Services Computing Conference, 1332-1337, 2008.
    [Trap2006] W. Trappe and l.C. Washington, Introduction to Cryptography with Coding Theory, Pearson International Edition, 2006.
    [Thie2002] C.C. Thien and J.C. Lin, “Secret image sharing,” Computer & Graphics, Vol. 26, No. 1, 765-771, 2002.
    [Ulut2009] M. Ulutas, V.V. Nabiyev, and G. Ulutas. "A New Secret Image Sharing Technique Based on Asmuth Bloom's Scheme." Application of Information and Communication Technologies, 1-5, 2009.
    [Web01] https://en.wikipedia.org/wiki/Chinese_remainder_theorem, last access on May 27, 2016.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE