簡易檢索 / 詳目顯示

研究生: 吉宗驥
Chi, Chong-Chi
論文名稱: 以新製程法合成L10相鐵白金/奈米碳管層奈米粒子以及奈米碳管層如何影響其中L10鐵白金結構之探討
Investigation of L10FePt nanoparticles encapsulated into carbon nanotubes with a novel synthesis method.
指導教授: 歐陽浩
Ouyang, Hao
口試委員: 賴志煌
Lai, Chih-Huang
張晃暐
Chang, Huang-Wei
邱顯浩
Chiou, Shan-Haw
徐文光
Hsu, Wen-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 196
中文關鍵詞: 鐵白金奈米粒子奈米碳管電子束照射
外文關鍵詞: FePt nanoparticle, carbon nanotube, electron irradiation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗結合電子束蒸鍍與爐管製成,發現新的方式合成L10FePt/Carbon nanotube core/shell nanoparticle. 有別於以往製作鐵白金奈米粒子需要昂貴的鐵及白金前驅物,本次實驗使用價格經濟的鐵烯作為前驅物,同時將鐵烯作為鐵源和碳源,配合事先鍍好白金的基板,在爐管中反應後即可得到L10FePt/Carbon nanotube core/shell nanoparticle。此方法別於以往先長好鐵白金再將鐵白金當作催化劑生長碳管,也別與長好鐵白金奈米粒子後再和碳管混合;此方法可以一步直接得到L10FePt奈米粒子包覆在奈米碳管中。
    分析奈米碳管中的鐵白金結構可以發現奈米碳管會壓縮其中的鐵白金,使其擁有較低的c/a ratio。同時元素比例分析結果配合高解析度穿透式電子顯微鏡影像分析顯示就算鐵與白金的元素比例離開了L10FePt相的邊界,外層的奈米碳管仍然會把其中的鐵白金結構維持在L10相的face center tetragonal結構而不是變成L12相的face center cubic結構。由此可看出碳管層包覆在外層可以幫助L10FePt序化。第二部分則是探討電子束照射對碳管層包覆的鐵白金奈米粒子的影響。實驗發現有碳管層包覆在外時,電子束照射會導致內核的鐵白金奈米粒子相變化,從L10FePt變成L12FePt3,也可以由L12Fe3Pt相轉變L10FePt。若外層沒有碳管層包覆,則是轉變成A1無序相。
    本次實驗貢獻主要是發現新的方式合成L10FePt/Carbon nanotube core/shell nanoparticles 以及發現新的碳管層幫助鐵白金序化機制。


    L10FePt, face center tetragonal structure with c/a ratio 0.964 and stoichiometry Fe100-xPtx (x=40-60), known as a ferromagnetic alloy with large uniaxial magneto-crystalline anisotropy and high coercivity, is successfully encapsulated in multi-walled carbon nanotubes (MWCNT). This synthetic method is a combined technique employing catalytic pyrolysis and electron beam deposition.
    In this study, MWCNT can intensify the formation of L10 phase with smaller c/a ratio even the Fe/Pt ratio deviated from regular L10 FePt phase. Beside, locations of precursor will affect the reaction rate, causing different products eventually. Samples collected from varied locations of furnace show various crystallographic phases and magnetic coercivities as evident by XRD, SQUID and TEM.

    目錄 Abstract ii 摘要 iii 致謝 v 目錄 vi 表目錄 vii 圖目錄 vii 第一章 序論 1 第二章:文獻回顧 6 2.1奈米碳管 6 2.1.1奈米碳管結構與基本性質 6 2.1.2奈米碳管製備方法 22 2.1.3爐管合成機制探討: 34 2.1.4奈米碳管與Graphene shell在材料外層影響 41 2.2鐵白金 54 2.2.1鐵白金基本性質 54 2.2.2鐵白金奈米粒子 70 2.3鐵白金/奈米碳管複合材料 72 2.4 CASTEP (Cambridge Sequential Total Energy Package) 81 2.4.1第一原理基本理論Hartree equation公式推導 83 2.4.2第一原理基本理論 Hartree-Fock equation 85 2.4.3密度泛函理論 (density function theorem, DFT) 86 2.4.4第一原理基本理論 局部密度近似(Local Density Functional Approximation, LDA) 88 2.4.5第一原理基本理論 廣義梯度近似(Generalized Gradient Approximation,GGA) 92 第三章:實驗方法 100 第四章:結果與討論 111 4.1製程討論與碳層包覆鐵白金對其結構之探討 111 4.2電子束照射影響 146 第五章:結論 178 附錄A:試片S5b TEM分析 179 附錄B:試片S5C TEM分析 183 附錄C:試片5各區EDS結果與Fe/Pt ratio 187

    chapter 1 Reference

    1.IEEE , Vol. 96, No. 11, November 2008
    L10FePt
    2.J. Wang et al. / Journal of Magnetism and Magnetic Materials 345 (2013) 165–17
    3.First-principles investigations of multimetallic transition metal clusters
    4.IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 2, FEBRUARY 2005
    Appl. Phys. Lett. 80, 2583 (2002)
    5.IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001
    6.J. Phys. D: Appl. Phys. 43 (2010) 474013
    7.AIP ADVANCES 6, 085302 (2016)
    8.Compos Sci Technol, 62 (2002), pp. 1993-1998
    9.J Polym Sci B, 42 (2004), pp. 2286-2293
    10.Computational Materials Science Volume 22, Issues 3–4, December 2001, Pages 180-184
    11.Composites Science and Technology Volume 166, 29 September 2018, Pages 125-130
    12.Science, 287 (2000), pp. 637-640
    13.Composites Science and Technology Volume 68, Issues 7–8, June 2008, Pages 1644-1648
    14.Compos Sci Technol, 63 (2003), pp. 1637-1646
    15.M Knupfer - Surface science reports, 2001 , Electronic properties of carbon nanostructures
    16.Energy Environ. Sci., 2014, 7,1919
    17.Energy Environ. Sci.,2019, 12, 2924
    18.IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 6, JUNE 2006
    19.Synthetic Metals Volume 161, Issues 15–16, August 2011, Pages 1522-1526
    20.Phys. Chem. Chem. Phys., 2015, 17, 2228-2234
    21.Journal of Hazardous Materials186 (2011) 436
    22.Nanotechnol. Environ. Eng. 4, 12 (2019)
    23.Materials Science and Engineering: B Volume 261, November 2020, 114673
    24.Surface Engineering Volume 36, 2020 - Issue 11, 1200-1209
    25.Chemical Engineering Journal 385 (2020) 123396
    26.Carbon Volume 177, 15 June 2021, Pages 189-198
    27.JOURNAL OF RAMAN SPECTROSCOPY, VOL. 28, 369È372 (1997)
    28.Carbon Volume 44, Issue 9, August 2006, Pages 1808-1820
    29.Journal of Molecular Catalysis A: Chemical 310
    30.Twenty-Third Symposium (International) on Combustion/The Combustion Institute, 1990/pp, 1581-1587
    31.Thin Solid Films Volumes 398–399, November 2001, Pages 150-155
    32.small.200500436
    33.Phys.Chem.Chem.Phys.,2017, 19, 32079
    34.Solid State Communications 149 (2009) 1619-1622
    35.Solid State Communications 150 (2010) 311-315
    36.J. Phys. Chem. C 2007, 111, 1200-1206
    37.Eur. J. Inorg. Chem. 2017, 6–29
    38.APPLIED PHYSICS LETTERS 94, 193107 2009
    39.PRL 107, 185501 (2011)

    chapter 2 Reference

    1.[S.Iijima, nature, 354(1991),56.]
    2.[Nantero]
    3.[Plasma Engineering (Second Edition)
    2018, Pages 365-453]
    4.[Chem.Sci.,2016,7,3681–3688]
    5.[1 JANUARY 1999 VOL 283 SCIENCE]
    6.[Science Vol 270, Issue 5239 17 November 1995]
    7.[Nature Communications volume 10, Article number: 3040 (2019)]
    8.[PHYSICAL REVIEW B 65 235430]
    9.[Science Advances 05 Feb 2016:Vol. 2, no. 2, e1500969]
    10.[RSC Adv., 2016, 6, 26361–26373]
    11.[Appl. Phys. Lett., Vol. 72, No. 8, 23 February 1998]
    12.[Phys. Rev. Lett. 81, 4656]
    13.[Science 11 Jan 2013:Vol. 339, Issue 6116, pp. 182-186]
    14.[PROCEEDINGS OF THE IEEE, VOL. 91, NO. 11, NOVEMBER 2003]
    15.[S. Iijima Nature, 354 (6348) (Nov. 1991), pp. 56-58]
    16.[N. Arora, N.N. Sharma / Diamond & Related Materials 50 (2014) 135–150]
    17.[www.clemson.edu/ces/lemt/Arc-Discharge.htm]
    18.[Science, 273 (1996), pp. 483-487]
    19.[Chem Phys Lett, 243 (1995), pp. 49-54]
    20.[E.T. Thostenson, Z.F. Renb and T.W. Choua Compos Sci Technol, 61 (2001), pp. 1899-1912]
    21.[Carbon, 44 (2006), pp. 1624-1652]
    22.[Energy Environ. Sci.,2019, 12, 2924]
    23.[https://Sites.google.com/site/cntcomposites/production-methods.]
    24.[Chem Phys Lett, 313 (1999), pp. 91-97]
    25.[Solid State Commun, 107 (1998), pp. 597-606]
    26.[Carbon Nanotube Synthesis and Growth Mechanism Mukul Kumar]
    27.[Nano Lett., Vol. 7, No. 3, 2007]
    28.[CARBON49 (2011) 3316–3324]
    29.[J. Cheng et al. / Solid State Communications 149 (2009) 16191622]
    30.[A. Moisala et al. / Chemical Engineering Science 61 (2006) 4393 – 4402]
    31.[Chemical Engineering Science 65 (2010) 2965-2977]
    32.[Crystal Research and Technology, 51: 466-474.2016]
    33.[Nano Letters 2003, 3, 4, 565-568]
    34.[Energy Environ. Sci., 2011, 4, 4954-4961]
    35.[ACS Nano 2019, 13, 10631−10642]
    36.[Hindawi Publishing Corporation Journal of Nanomaterials Volume 2014, Article ID 989672]
    37.[Science 26 May 2006: Vol. 312, Issue 5777, pp. 1199-1202]
    38.[nature materials | VOL 6 | OCTOBER 2007]
    39.[Nano Lett., Vol. 4, No. 6, 2004]
    40.[ PHYSICAL REVIEW B, VOLUME 65, 165423]
    41.[nature materials | VOL 6 | OCTOBER 2007
    42.[NATURE · VOL 382 · 1 AUGUST 1996]
    43.[PRL 101, 156101 (2008)]
    44.[Philosophical Magazine, 88:18-20, 2725-2]
    45.[Journal of Magnetism and Magnetic Materials 267 (2003) 248]
    46.[J. Wang et al. / Acta Materialia 91 (2015) 41–49]
    47.[Applied Surface Science 509 (2020) 14533]
    48.[J. Phys. D: Appl. Phys. 53 (2020) 135002]
    49.[J. Phys.: Condens. Matter 33 (2021) 104003]
    50.[L. Zhang et al. / Journal of Magnetism and Magnetic Materials 322 (2010) 2658–2664]
    51.[J. Appl. Phys., Vol. 87, No. 9, 1 May 2000]
    52.[APPLIED PHYSICS LETTERS 98, 101911 2011]
    53.[Nanoscience and Nanotechnology Letters, Volume 8, Number 3, March 2016, pp. 260-265]
    54.[APPLIED PHYSICS LETTERS 100, 261909 (2012)]
    55.[Science 26 May 2006: Vol. 312, Issue 5777, pp. 1199-1202]
    56.[J. Phys. Chem. B 2003, 107, 5419-5425]
    57.[Adv. Mater. 2006, 18, 393–403]
    58.[J Nanopart Res (2011) 13:3191–3197]
    59.[Appl. Phys. Lett. 94, 193107 2009]
    60.[J. Mater. Chem., 2012, 22, 14149]
    61.[PRL 107, 185501 (2011)]
    [62]P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
    [63]W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
    [64]J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    [65]D. R. Hamann, M. Schluter, and C. Chiang, Phy. Rev. Lett. 43 (1979) 1494.
    [66]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992).
    [67]F. S. Ham and B. Segall, Phys. Rev. 124 (1961) 1786.
    [68]M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48 (1993) 4937.
    [69]G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18 (1978) 2812.
    [70]Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons (2005).
    [71]The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller.
    [72]G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
    [73]D. Vanderbilt, Phys. Rev. B, 41 (1990) 7892.
    [74]C. G. Bmyden, Math. Comput 19 (155) 577.
    [75]P. Pulay, Chem. Phys. Lett. 73 (1980) 393
    [76]D. D. Johnson, Phys. Rev. B38, 12 (1988) 87.
    [77]In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271].
    [78]N. W. Ashcroft and N. D. Mermin, Solid state physics, Saunders College Publishing (1976).
    [79]M. P. Marder, Condensed matter physics, John Wiley and Sons (2000).
    [80]江進福, 物理雙月刊, 廿三卷五期, P549-553 (2001)
    [81]L. H. Thomas, "The calculation of atomic fields". Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 542.
    [82]E. Fermi, "Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo". Rend. Accad. Naz. Lincei6 (1927) 602.
    [83]E. Wigner, Transactions of the Faraday Society, 34 (1938) 0678.
    [84]D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.
    [85]S. H. Vosko, J. P. Perdew, and A. H. Macdonald, Phy. Rev. Lett. 35 (1975) 1725.
    [86]A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52 (1995) R5467.

    chapter 3 Reference
    1.[ems java version V4 JEMS-SWISS, Dr. P. Stadelmann Chemin Rouge 15 CH-1805 Jongny Switzerland)]
    2.[M. C. Payne et al. : Abinitio iterative minimization techniques]
    3.[材料的設計、模擬與計算, CASTEP 的原理及其應用/陳志謙等著.]

    chapter 4 Reference
    1.[Crystal Research and Technology, 51: 466-474.2016]
    2.[Nano Letters 2003, 3, 4, 565-568]
    3.[PRL 107, 185501 (2011)]
    4.[PRL 101, 156101 (2008)]
    5.[Science 26 May 2006: Vol. 312, Issue 5777, pp. 1199-1202]
    6.[F. Banhart et al. / Chemical Physics Letters 269 (1997) 349-355]
    7. PHYSICAL REVIEW B 81, 094437 ,2010

    QR CODE