研究生: |
陳江宏 Chen, Jiang-Hung |
---|---|
論文名稱: |
氮化鉭金屬閘極和氧化鋁介電層應用於快閃記憶體的特性與二位元操作研究 Characterization and Two-Bit Operation Study of Flash Memory with Al2O3 Blocking Layer and TaN Metal Gate |
指導教授: |
吳永俊
Wu, Yung-Chun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 非揮發性記憶體 、奈米線 、二位元操作 、雙閘極 |
外文關鍵詞: | Nonvolatile Memory, Nanowires, TANOS, Two-Bit operation, dual gate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於非晶矽薄膜電晶體,低溫複晶矽薄膜電晶體其主動層擁有十分高的載子遷移率,此項優點有利於電晶體尺寸的微縮以及增加電晶體的操作速度,進而有效提高積體電路元件的密度與增加晶片的功能與設計彈性。此篇論文的研究主題是以氮化鉭為金屬閘極和氧化鋁為介電層的π形狀閘極之奈米線結構低溫複晶矽薄膜電晶體記憶體,主要應用於平面顯示器、3D堆疊結構和系統面板(SOP)的實現。
論文中利用多晶矽為主動層以降低串聯電阻;使用氧化鋁為介電層以增加記憶體的寫入抹除速度;氮化鉭為金屬閘極來抑制電子從閘極注入減慢抹除速度;多條Pi形狀之奈米線結構靠著其優異的閘極控制能力提升寫入以及抹除資料的效率。以氮化矽為儲存層,而使元件擁有在高溫 (85oC) 下極佳的資料保持能力、好的重複讀寫忍受度。,明顯指出此結構具有應用於實際產品的高度價值。
論文一部分提到,由於氮化矽為離散的缺陷,二位元操作可以實現。我們討論了兩種不同的二位元操作方法。進一步地,我們討論雙閘極的氮化鉭金屬閘極和氧化鋁介電層應用在複晶矽薄膜電晶體非揮發性記憶體。與單閘極比較,實驗結果顯示,雙閘極有較低的漏電流和較大的記憶窗(memory window)。二位元的操作也具有較小的操作電壓和讀取電壓。
在論文列出的各項數據顯示出具氮化鉭金屬閘極和氧化鋁介電層與π形狀閘極之多條奈米線結構低溫複晶矽薄膜電晶體非揮發性記憶體為一高效能記憶體且適合應用於系統整合之平面顯示器。
Compared with the amorphous-Si thin film transistors (TFTs), low-temperature poly-Si (LTPS) TFTs have higher mobility that help shrinking the transistor dimension, enhance the circuit operation speed, increase the transistor density on circuit, and add function of design capability of the circuit. The Pi-gate nanowires (NWs) with TaN metal gate and Al2O3 blocking layer were introduced to the poly-Si TFT nonvolatile memory. These devices have drawn much attention because of their wide applications on active matrix crystal displays (AMLCDs), and organic light emitting diodes (OLEDs). Furthermore, the LTPS TFTs will help to carry out three-dimensional integrated circuits (3D-ICs) for system-on–chip (SOC) and fully functional system-on-panel (SOP) applications.
In this thesis, introducing NWs channel in NVM increase gate controllability and program/erase speed (P/E) speed. The P/E speed and data retention can be improved by introducing Al2O3 high-κ blocking oxide. The erase efficiency of the TaN gate device is higher than the Poly-Si device due to the work function of the TaN is higher than the Poly-Si. The unwanted backward FN tunneling current of electron through the blocking oxide is significantly suppressed.
Because of the discrete traps of Si3N4, two-bit operation could be achieved. We discuss two kinds of two-bit operations. In addition, we discuss the dual gate poly-Si TFT NVM with Al2O3 blocking layer and TaN metal gate. Dual gate devices exhibit low leakage current in the off state and high program and erase speed due to the more edge-induced fringe electric field at each corner. A novel two-bit per cell operation is performed by modulated Fowler-Nordheim (MFN) programming and band-to-band tunneling-induced hot-hole injection (BTBT HH) erasing. The dual gate TANOS memory shows larger memory window and clear distinguish ability than single gate memory under two-bit operation
Chapter 1
[1-1] H. Kuriyama, T. Okada, M. Ashida, O. Sakamoto, K. Yuzuriha, K. Tsutsunii, T. Nishimura, K. Ananii, Y. Kohno, and 11. Miyoshi, “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. VLSI Tech., pp.38, 1992.
[1-2] Kynett V.N., Baker A., Frandrich M., Hoekstra G.,Jungroth O., Kreifels J., and Wells S., “ An in-system reprogrammable 256K CMOS Flash memory”, ISSCC Tec. Dig., pp.132, 1988.
[1-3] K. Kahng and S. Sze, "A floating gate and its application to memory devices," IEEE Transactions on Electron Devices, vol. 14, pp. 629-629, 1967.
[1-4] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, "NROM: A novel localized trapping, 2-bit nonvolatile memory cell," IEEE Electron Device Letters, vol. 21, pp. 543-545, 2000.
[1-5] J. Bu and M. White, "Effects of two-step high temperature deuterium anneals on SONOS nonvolatile memory devices," IEEE Electron Device Letters, vol. 22, pp. 17-19, 2001.
[1-6] F. R. Libsch and M. H. White, “Charge transport and storage of low programming voltage SONOS/MONOS memory devices,” Solid-State Electron., Vol. 33, pp. 105—126, 1990.
[1-7] M. H. White, Y. Yang, A. Purwar, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Comp., Packag., Manufact. Technol. A, Vol. 20, pp. 190-195, June 1997
[1-8] E. Suzuki, H. Hayashi, K. Ishii, and Y. Hayashi, “A low-voltage alterable EEPROM with metal-oxide-nitride-oxide-semiconductor (MONOS) structures,” IEEE Trans. Electron Devices, Vol. 30, p. 122, Feb. 1983.
[1-9] M. K. Cho and D. M. Kim, “High Performance SONOS Memory Cells Free of Drain Turn-On and Over-Erase: Compatibility Issue with Current Flash Technology,” IEEE Electron Device Letters, Vol. 21, No. 8, Aug 2000.
[1-10] B. Eitan, R. Kazerounian, A. Roy, G. Crisenza, P. Cappelletti, A. Modelli, W. Inc, and C. Fremont, “Multilevel flash cells and their trade-offs,” IEDM Tech. Dig., pp. 169-172, 1996.
[1-11] Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei, “High-performance nonvolatile HfO2 nanocrystal memory,” IEEE Electron Device Letters, Vol. 26, No. 3, pp. 154-156, Mar. 2005.
[1-12] D. Montanan, J. Van Houdt, D. Wellekens, CI Vanhorebeek, L. Haspeslagh, L. Deferm, C. I. Groeseneken, H. E. Maes, “Multi-level charge storage in source-side injection flash EEPROM,” IEEE Nonvolatile Memory Technology Conference, pp.80-83, Jun. 1996.
[1-13] H. Oshima and S. Morozumi,” Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989.
[1-14] Erh-Kun Lai, Hang-Ting Lue, Yi-Hsuan Hsiao, Jung-Yu Hsieh, Chi-Pin Lu, Szu-Yu Wang, Ling-Wu Yang, Tahone Yang, Kuang-Chao Chen, +Jeng Gong, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “A Multi-Layer Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory,” IEDM, 2006
[1-15] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios and R. Chau., “High Performance Fully-Depleted Tri-Gate COMS Transistors,” IEEE Trans. Electron Device Lett., vol. 24, pp. 263, 2003.
[1-16] Yung-Chun Wu, Ting-Chang Chang, Chun-Yen Chang, Chi-Shen Chen, and Chun-Hao Tu, Po-Tsun Liu, Hsiao-Wen Zan and Ya-Hsiang Tai, “High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure,” Appl. Phys. Lett., vol. 84, pp. 3882, 2004.
[1-17] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, Chin-Cheng Ko ,Sidney Yang, Li-Wei Feng, S. M. Sze, ,Chun-Yen Chang and Chen-Hsin Lien, “Pi-shape gate polycrystalline silicon thin-film transistor for nonvolatile memory aplications,” Appl. Phys. Lett., vol. 91, pp. 213101, 2007.
[1-18] Yung-Chun Wu, Po-Wen Su, Chin-Wei Chang, Min-Feng Hung” Novel Twin Poly-Si Thin Film Transistors EEPROM with Tri-Gate Nanowires Structure,” IEEE Electron Device Letters, vol. 29, pp. 1226-1228, Nov. 2008.
[1-19] Chang Hyun Lee; Kyung In Choi; Myoung Kwan Cho; Yun Heub Song; Kyu Charn Park; Kinam Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories,” IEDM, 2003, 26.5.1 - 26.5.4
[1-20] S. Minami and Y. Kamigaki, ”A novel MONOS nonvolatile memory device ensuring 10-year data retention after 107 erase/write cycles,” IEEE Trans Electron Devices, vol. 40, no.11, pp.2011-2017, Nov. 1993.
[1-21] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Dong-Wei Yang, Yuan-Bin Chung, Tien-Ko Wang P. J. Tzeng, C. H. Lin, L. S. Lee, M. J. Tsai, and Albert Chin “Crucial integration of high work-function metal gate and high-k blocking oxide on charge-trapping type flash memory device,” Applied Physics Letters, 93, 202592-1, 2008.
[1-22] X. Wang, J. Liu, W. Bai, D. L. Kwong, “A novel MONOS-Type Nonvolatile Memory Using High-k Dielectrics for Improved Data and Programming Speed,” IEEE Trans. Electron Devices, vol.51 no.4, pp.597-602, Apr.2004.
[1-23] C. H. Lee, S.H. Hur, Y. C. Shin, J. H. Choi, D.G. Park, K. Kim, “Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory,” Appl. Phys. Lett., vol86, p.152908, 2005
[1-24] Y. C. Wu, M. F. Hung, C. W. Chang, and Po. W. Su, “Two-bit effect of tri-gate nanowires polycrystalline silicon thin-film-transistor nonvolatile memory with oxide/nitride/oxide gate dielectrics,” Applied Physics Letters, 92, 163506, 2008.
[1-25] Y. C. Wu, T. C. Chang, P. T. Liu, C. W. Chou, Y. C. Wu, C. H. Tu, and C.Y. Chang, “High-Performance Metal-Induced Lateral-Crystallization Polysilicon Thin-Film Transistors With Multiple Nanowire Channels and Multiple Gate,” IEEE Transactions on Nanotechnology, vol. 5, 157, 2006
Chapter 2
[2-1] T. Y. Chan, K. K. Young, C. Hu, “A True Single Transistor Oxide-Nitride- Oxide EEPROM”, IEEE Electron Device Letters, EDL-8, No- 3, pp. 93-95, 1987.
[2-2] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, Vol. 85, pp. 1248, 1997.
[2-3] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, ch. 3, p.59, 1991.
[2-4] Stanley Wolf, Silicon Processing for The VLSI ERA, Vol.3, pp.435
[2-5] M. Lenzlinger, “Fowler-Mordheim Tunneling in thermal grown SiO2”, Appl. Phys. Lett., Vol. 40, pp. 278-283, 1969.
[2-6] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,” IEEE J. Solid-State Circuits, Vol. 14, pp. 442, 1979.
[2-7] I. C. Chen, C. Kaya and J. Paterson, “Band-to-band tunneling induced substrate hot-electron (BBISHE) injection: A new programming mechanism for nonvolatile memory devices,” IEDM, pp.263, 1989.
[2-8] K. San, C. Kaya, and T. Ma, "Effects of erase source bias on Flash EPROM device reliability," IEEE Transactions on Electron Devices, vol. 42, pp. 150-159, 1995.
[2-9] S. Chung, C. Yih, S. Cheng, and M. Liang, "A new technique for hot carrier reliability evaluations of flash memory cell after long-term program/erase cycles," IEEE Transactions on Electron Devices, vol. 46, pp. 1883-1889, 1999
[2-10] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” IEDM Tech. Dig., pp. 291–294, 1994.
[2-11] Roberto Bez, Emilic Camerlenghi, Alberto Modelli, and Angelo Visconti,“Introduction to Flash Memory,” Proc. IEEE, Vol. 91, pp. 489-502, 2003.
[2-12] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in Flash memories after program/erase cycling,” in Proc. IRPS, pp. 1–6, 2002.
[2-13] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Viscontio, “Introduction to Flash memory,” Proceedings of the IEEE, vol. 91, pp.489, 2003.
[2-14] Van Houdt J.F., Wellekens D., Ravazzi L., and Sangiorigi E., “Soft-programming in scaled flash memory cells,” H.C. de Graaf and H.V. Kranemburg (Eds.), Proc. ESSDERC 95, The Hague (The Netherlands), pp. 549.