研究生: |
李佳銘 Li, Jia-Ming |
---|---|
論文名稱: |
修改後抗菌胜肽N3造成SW480死亡的路徑探討 Exploring the antiproliferative effect on a cancerous cell line SW480 by a sequence-modified antimicrobial peptide N3 |
指導教授: |
林志侯
Lin, Thy-Hou |
口試委員: |
張晃猷
Chang, Hwan-You 高茂傑 Kao, Mou-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 抗菌胜肽 |
外文關鍵詞: | antimicrobial peptide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抗癌胜肽的發展在近幾年越來越受到重視,其對癌細胞的高毒殺性、低抗藥性產生,以及對正常細胞的低副作用,都使其成為研發抗癌藥的新方向。本實驗室從Lactobacillus paracasei ATCC 27092菌株的基因庫中篩選出抗菌胜肽BD21,並證實其具有毒殺人結腸癌細胞SW480的能力。為了更進一步提高毒殺能力,實驗室針對BD21的結構做出修改,增加了帶電性、hydrophobic moment以及α-helix的比例,而得到N3。在本篇研究中,透過CCK8 assay我們知道N3的IC50為6.1 μM,而在caspase抑制劑Z-VAD-fmk和西方墨點法的實驗中,我們發現Z-VAD-fmk並不能抑制N3造成SW480死亡,且SW480內的凋亡指標蛋白PARP,並沒有cleavage form產生,而在培養基中,我們偵測到壞死指標蛋白HMGB1和Cyclophilin A,這證明N3是透過細胞壞死機制造成SW480死亡,而不是凋亡機制。最後透過共軛焦顯微鏡,我們看到N3可以在短時間內打破細胞膜,並進入到細胞中,而細胞型態也隨著時間改變,到最後細胞膜結構完全被破壞,細胞也跟著死亡。
The development of anticancer peptides has received more and more attention in recent years. The high toxicity and low drug resistance of anticancer peptides to cancer cells, and the low side effects of anticancer peptides on normal cells have made them a new direction for the development of anticancer drugs. Our laboratory identified an antimicrobial peptide named BD21 from the gene bank of Lactobacillus paracasei ATCC 27092 and confirmed it has ability to kill human colon adenocarcinoma cell SW480. In order to improve the toxicity, we modified the sequence of BD21 by increasing its electric charge, hydrophobic moment and the ratio of α-helix, and then we got a new peptide N3. In this study, we know that the IC50 of N3 is 6.1μM through the CCK8 assay. By the experiments of caspase inhibitor named Z-VAD-fmk and western bolt, we found that Z-VAD-fmk did not inhibit the death rate of SW480 caused by N3 and the apoptosis marker PARP in SW480 did not produce cleavage form. In the medium, we detected the necrosis marker HMGB1 and Cyclophilin A. These confirmed that N3 induced cell death by necrosis not apoptosis. Finally, through the confocal microscope, we found that N3 could break the cell membrane in a short time and enter the cytoplasm. The cell morphology also changed over time, and finally the cell membrane structure was destructed completely and the cell dead.
1. Jenssen H, Hamill P, Hancock RE. (2006). Peptide antimicrobial agents. Clin Microbiol Rev, 19, 491–511.
2. Wang, Z., and G. Wang. (2004). APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 32:D590-D592.
3. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. nature,415(6870), 389-395.
4. Guangshun Wang, Xia Li and Zhe Wang. (2016). APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 2016, Vol. 44, Database issue D1087–D1093.
5. Fernebro J. (2011). Fighting bacterial infections-future treatment options. Drug Resist Updat, 14(2), 125-139.
6. Hoskin DW and Ramamoorthy A.(2008). Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778: 357-375.
7. Schweizer F.( 2009). Cationic amphiphilic peptides with cancerselective toxicity. Eur J Pharmacol 625: 190-194.
8. Mader JS and Hoskin DW. (2006). Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15: 933-946.
9. Sok, M., Sentjurc, M., and Schara, M. (1999). Membrane fluidity characteristics of human lung cancer. Cancer Lett. 139, 215–220.
10. Gaspar, D., Veiga, A. S., & Castanho, M. A. (2013). From antimicrobial to anticancer peptides. A review. Front Microbiol, 4, 294.
11. Silvestro L, Gupta K, Weiser JN and Axelsen PH.(1997) The concentration-dependent membrane activity of cecropin A. Biochemistry 36: 11452-11460.
12. Li Y. C., Park M. J., Ye S. K., Kim C. W., Kim Y. N. (2006). Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am. J. Pathol. 168, 1107–1118.
13. Zasloff M.(1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84: 5449-5453.
14. Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Løkke C, Ponthan F, Johnsen JI, Sveinbjørnsson B, Kogner P, Flaegstad T and Rekdal Ø.(2006). The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer 119: 493-500.
15. Ohtake T, Fujimoto Y, Ikuta K, Saito H, Ohhira M, Ono M and Kohgo Y.(1999) Proline-rich antimicrobial peptide, PR-39 gene transduction altered invasive activity and actin structure in human hepatocellular carcinoma cells. Br J Cancer 81: 393- 403.
16. Brogden KA.(2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3: 238- 250.
17. L Yang, T A Harroun, T M Weiss, L Ding, and H W Huang.(2001). Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 81(3): 1475–1485.
18. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y.(1992). Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 31(49):12416-23.
19. Matsuzaki K, Murase O, Fujii N, Miyajima K.(1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 35(35):11361-8.
20. Li Y, Xiang Q, Zhang Q, Huang Y and Su Z.(2012). Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37: 207-215.
21. Koskimaki JE, Karagiannis ED, Rosca EV, Vesuna F, Winnard PT, Raman V, Bhujwalla ZM and Popel AS.(2009). Peptides derived from type IV collagen, CXC chemokines, and thrombospondin- 1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11: 1285-1291.
22. Wang Y, Li D, Shi H, Wen Y, Yang L, Xu N, Chen X, Chen X, Chen P, Li J, Deng H, Wang C, Xie G, Huang S, Mao Y, Chen L, Zhao X and Wei Y.(2009). Intratumoral expression of mature human neutrophil peptide-1 mediates antitumor immunity in mice. Clin Cancer Res 15: 6901-6911.
23. Leuschner C and Hansel W.(2005) Targeting breast and prostate cancers through their hormone receptors. Biol Reprod 73: 860–865.
24. Kuriyama I, Miyazaki A, Tsuda Y, Yoshida H and Mizushina Y.(2013) Inhibitory effect of novel somatostatin peptide analogues on human cancer cell growth based on the selective inhibition of DNA polymerase β. Bioorg Med Chem 21: 403-411.
25. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci, 4(11), 2411-2423. doi:10.1002/pro.5560041120
26. Kroemer G., Galluzzi, L., Vandenabeele, P., et al. Nomenclature Committee on Cell, D. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 16(1), 3-11.
27. Raucci A, Palumbo R, Bianchi ME. ( 2007). HMGB1: a signal of necrosis. Autoimmunity,40(4):285-9.
28. Christofferson DE, Yuan J. (2010). Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ. 17(12): 1942–1943.
29. Eisenberg, D., Weiss, R. M., & Terwilliger, T. C. (1982). The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature, 299(5881), 371-374.
30. Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. (2007). Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol., 13;370(3):459-70.