研究生: |
許町州 Hsu, Ting-Chou |
---|---|
論文名稱: |
薛丁格方程的Hamilton-Jacobi解法 The Hamilton-Jacobi Method Applied to the Schrodinger Equation |
指導教授: | 陳樹杰 |
口試委員: |
石至文
高淑蓉 陳樹杰 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 13 |
中文關鍵詞: | 薛丁格 |
外文關鍵詞: | Hamilton-Jacobi, Schrodinger |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薛丁格方程的canonical formulation 在real symplectic space上被建構完成,則相對應的Hamilton-Jacobi equation 即可得到;接著再用Hamilton-Jacobi method將薛丁格方程的解解出。
On a real symplectic space, the canonical formulation of the Schrodinger equa-
tion is built, thereafter the associated Hamilton-Jacobi equation is established. The
Schrodinger equation is thus solved by the Hamilton-Jacobi method.
[1] H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley, 1980.
[2] C. M. Leech, The Hamilton-Jacobi equation applied to continuum, Trans. ASME Vol.
64, 658-663, 1997.
[3] J.E. Marsden and T.S. Ratiu, Introductionto Mechanics and Symmetry, Springer Verlag,
New York, 2nd edition, 1998.
[4] D. Musicki, Canonical transformations and the Hamilton-Jacobi method in the eld
theory, Publications de L'institut Mathematique, Nouvelle serie, tom 2, 21-34, 1962.
[5] J. Parry, D. S. Salopek and J. M. Stewart, Solving the Hamilton-Jacobi equation for
general relativity, Physical Review D, Vol. 49, 2872-2881, 1994.
[6] G. Rosen, Hamilton-Jacobi functional theory for the integration of classical eld equations,
International Journal of Theoretical Physics, Vol. 4, 281-285, 1971.
[7] F. Schwabl, Quantum Mechanics, 2nd revised edition, Springer, 1995.