簡易檢索 / 詳目顯示

研究生: 林合耕
LIN, HO-KENG
論文名稱: 以元素硫為原料之含硫高分子合成與性質研究
Preparation and Properties of Sulfur-containing Polymers by Directly Using Elemental Sulfur as Feedstock
指導教授: 劉英麟
Liu, Ying-Ling
口試委員: 賴君義
Lai, Juin-Yih
鄭如忠
Jeng, Ru-Jong
蔡敬誠
Tsai, Jing-Cherng
郭紹偉
Kuo, Shiao-Wei
李魁然
Lee, Kueir-Rarn
何榮銘
Ho, Rong-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 157
中文關鍵詞: 元素硫自修復
外文關鍵詞: sulfur, self-healing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用精煉石油的副產物元素硫直接作為合成反應的原料,除基於2013年Pyun教授團隊所開發的逆硫化反應外,本研究也開發出新的硫化反應,據以製備新穎的含硫高分子材料,並探討其性質以及可能的應用。藉由新的硫化反應的研究,為元素硫過剩的問題提供新的出路,也開發出具有優異性質的新高分子材料。
    本研究首先以含面體矽氧烷寡聚物(polyhedral oligomeric silsesquioxane, POSS)之(methyl-methacrylate-POSS, MMA-POSS)為單體,與元素硫直接進行逆硫化反應而製備具有反應性的POSS-硫複合高分子材料S-MMA-POSS。S-MMA-POSS可以藉由共交聯反應,有效地將自修復能力導入傳統的熱固性樹脂中,形成含有POSS的交聯高分子複合材料;此外,S-MMA-POSS也可以作為提升高分子材料在紅外光區穿透度的改質劑。其後,將元素硫的逆硫化反應擴展至米氏酸(Meldrum’s Acid)衍生物,以帶有苯乙烯基的米氏酸化合物(2,2,5-trimethyl-5-(4-vinylbenzyl)-[1,3]dioxane-4,6-dione, MA-MS)與硫進行加成反應,生成S-MA-MS高分子複合材料。進行逆硫化反應後,S-MA-MS因為含有動態的S-S鍵而具有自修復性質,且S-MA-MS仍然保有MA環的結構可供進一步進行開環交聯反應。因此, S-MA-MS可作為具有交聯以及自修復特性的功能性添加劑,賦予其他高分子自修復的性質。此外,具有四個氧原子的MA環與接上的S-S鏈段,增加材料對於Hg2+的親和性,加上MA環開環反應產生的二氧化碳帶來的自發泡性質,進一步製備出多孔性材料S-MA-MS-foamed,以提高材料的比表面積提升其吸附Hg2+的性能,應用於製備Hg2+吸附材料。
    此外,本研究也開發一種直接利用元素硫為原料來製備高分子材料的反應,並命名為硫自由基轉移與偶合反應 (sulfur radical transfer and coupling reaction, SRTC reaction)。在這反應中,使用benzoxazine作為自由基受體,製備出具有高含硫成分的Polybenzoxazines,使用1H NMR與13C DEPT來分析元素硫與benzoxazine環之間的反應機制。此外,polybenzoxazine–sulfur複合材料具有動態S-S鍵,因此擁有自修復的特性。在此部分的研究中,展示如何使用新反應製備具自修復且具加工性的高分子材料,並且探討且提出此反應的反應機制。
    本研究進一步發現元素硫與benzoxazine之間的反應機構與benzoxazine環的化學結構有關。使用13C DEPT來分析反應的機制,且得出以下結論:具有較高鹼度且較少立體結構障礙的benzoxazines傾向於進行thiolation反應形成硫酮官能基(C=S鍵),形成硫酮化的benzoxazine。此反應提供新的且有方便的方法,利用元素硫來製備含有硫酮基的benzoxazine,除可以當作製備含硫熱固性樹酯的前驅物外,硫酮化後的benzoxazine也展現抗菌能力,尤其是對於對抗生素(penicillin)有抗性的菌種。


    Elemental sulfur has been directly used as stock to prepare novel polymeric materials in this work to make all-out effort for the problem of excess sulfur. Besides using inverse vulcanization invented by Pyun groups at 2013 as our synthetic method, we also developed new reaction routes to prepare polymeric materials with intriguing properties.
    First, a new reactive and functional hybrid (S-MMA-POSS) of polyhedral oligomeric silsesquioxane (POSS) and sulfur was prepared with a direct reaction between a multifunctional methacrylated POSS compound (MMA-POSS) and elemental sulfur (S8) through the “inverse vulcanization” process. This preparation bases on the design of a reactive building block possessing POSS cages and sulfur (S-S) chains for building up POSS-based self-healing materials, which could be obtained with self-curing the S-MMA-POSS hybrid and use of the S-MMA-POSS hybrid as a reactive and functional additive for conventional thermosetting resins. Moreover, the presence of the sulfur chains is also effective to enhance the transparency of the self-healing materials in mid-infrared region.
    In the second part, a new reactive and functional polysulfide (S-MA-MS) possessing Meldrum's Acid (MA) moieties was prepared with a direct reaction between a MA compound (MA-MS) and elemental sulfur through the “inverse vulcanization” process. S-MA-MS is an effective building block for imparting self-healing ability to the corresponding thermally crosslinked MA-containing nanocomposites through a self-curing reaction and co-curing reaction with conventional thermosetting resins. This preparation is based on the design of a reactive building block possessing MA groups and polysulfide chains for building up MA-based self-healing materials, which could be obtained with self-curing the S-MA-MS and use of the S-MA-MS as a reactive and functional additive for conventional thermosetting resins. The presence of the polysulfide chains and MA groups can increase the mercury binding sites and self-foamed ability of S-MA-MS can extend the surface area. Both properties can effectively enhance mercury capture ability of material.
    In the third part, the work reports a novel approach to prepare polymeric materials using elemental sulfur as a feedstock through the newly developed sulfur radical transfer and coupling (SRTC) reaction. With benzoxazine compounds as exmaples of radical acceptors in the SRTC raction, polybenzoxazines possessing high sulfur contents have been prepared. The reactions between elemental sulfur with benzoxazine rings have been traced with FT-IR, 1H NMR, and 13C-DEPT to demonsrates the SRTC reaction mechanism. Moreover, the prepared polybenzxaozine-sulfur hybrid materials show attractive self-healing property based on the dynamic S-S liankges. An effective reaction route and the corresponding self-healing sulfur-possessing polymeric materials are demonstrated.
    For the last part, the reaction routes between benzoxazine compounds and elemental sulfur has been demonstrated to be dependent on the chemical structure of benzoxazines. Benzoxazines having high basicity and less steric hindrance tend to undergo thiolation reaction with formation of thioxo (C=S) groups. The route of thiolation reaction provides a new and effective method for preparation of thioxo-containing benzoxazine compounds using elemental sulfur as a feedstock. The reaction mechanism between benzoxazine and sulfur have been determined with 13C-distortionless enhancement by polarization transfer nuclear magnetic resonance spectroscopy. The thioxo-containing benzoxazines could be utilized as precursorsfor preparation of sulfur-containing thermosetting resins. Moreover, they also exhibit favorable antibacterial activity against drug-resistant bacteria compared to the standard antibiotic ampicillin. This work has demonstarted an example of direct utilization of elemental sulfur as a feedstock in material synthesis .

    摘要 I Abstract IV 序言 VII 目錄 VIII 圖目錄 XI 表目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 元素硫之利用方法: 物理製程簡介 3 1-2.1 熔化擴散法 4 1-2.2 氣相及溶液分散法 5 1-3 元素硫之利用方法: 化學製程簡介 9 1-3.1 陰離子反應 9 1-3.2 自由基反應 11 1-3.3 其它直接利用元素硫的化學反應 15 1-4 由Pyun團隊開發的「逆硫化反應」 16 1-5 研究目的 19 第二章 由多面體矽氧烷寡聚物為單體利用逆硫化反應製備自修復光學材料 21 2-1 文獻回顧 21 2-2 實驗藥品與儀器設備 32 2-3 實驗流程 34 2-4 結果分析與性質討論 35 2-5 結論 53 第三章 由米氏酸為單體利用逆硫化反應製備汞離子吸附材料 54 3-1 文獻回顧 54 3-2 實驗藥品與儀器設備 61 3-3 實驗流程 62 3-4 結果分析與性質討論 64 3-5 結論 80 第四章 硫自由基轉移與偶合反應的開發與應用 81 4-1 文獻回顧 81 4-2實驗藥品與儀器設備 86 4-3 實驗流程 87 4-4 結果分析與性質討論 89 4-5 結論 104 第五章 開發簡易製備含有硫酮基分子的方法與應用 105 5-1 研究背景 105 5-2實驗藥品與儀器設備 110 5-3實驗流程 112 5-4 結果分析與性質討論 117 5-5 結論 138 第六章 總結與展望 139 第七章 參考文獻 141

    1. Kutney, G. in Sulfur. History, Technology, Applications and Industry, ChemTec, Toronto, 2007.
    2. Frasch, H. U.S. Patent 461,429/31, 1891. (Cite from: Lim, J.; Pyun, J.; Char, K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials. Angew. Chem. Int. Ed. 2015, 54, 3249 - 3258.)
    3. Orr, W. L. Sulfur in petroleum and related fossil organic materials. Abstr. Pap. Am. Chem. Soc. 1976, 172, 6.
    4. Rodriguez, J. A.; Hrbek, J. Interaction of Sulfur with Well-Defined Metal and Oxide Surfaces:  Unraveling the Mysteries behind Catalyst Poisoning and Desulfurization. Acc. Chem. Res. 1999, 32 (9), 719 - 728.
    5. Xie, C.; Chen, Y. S.; Engelhard, M. H.; Song, C. S. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel. ACS Catal. 2012, 2, 1127 - 1137.
    6. Lakhapatri, S. L.; Abraham, M. A. Sulfur poisoning of Rh-Ni catalysts during steam reforming of sulfur-containing liquid fuels. Catal. Sci. Technol. 2013, 3, 2755 - 2760.
    7. C. F. Claus, British Patent 3608, 1882. (Cite from: Lim, J.; Pyun, J.; Char, K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials. Angew. Chem. Int. Ed. 2015, 54, 3249 - 3258.)
    8. Choudhary, T. V.; Malandra, J.; Green, J.; Parrott, S.; Johnson, B. Towards clean fuels: Molecular-level sulfur reactivity in heavy oils. Angew. Chem. Int. Ed. 2006, 45, 3299 - 3303.
    9. Worthington, M. J. H.; Kucera, R. L.; Chalker, J. M. Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748 - 2761.
    10. Brunet, S.; Mey, D.; Perot, G.; Bouchy, C.; Diehl, F. On the hydrodesulfurization of FCC gasoline: a review. Appl. Catal. A. 2005, 278, 143 - 172.
    11. Gupta, N.; Roychoudhury, P. K.; Deb, J. K. iotechnology of desulfurization of diesel: prospects and challenges. Appl. Microbiol. Biotechnol. 2005, 66, 356 - 366.
    12. Babich, I. V.; Moulijn, J. A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 2003, 82, 607 - 631.
    13. Hernández-Maldonado, A. J.; Yang, R. T. Desulfurization of commercial liquid fuels by selective adsorption via pi-complexation with Cu (I)-Y zeolite. Ind. Eng. Chem. Res., 2003, 42, 3103 -3110.
    14. Hernández-Maldonado, A. J.; Yang, R. T. Desulfurization of liquid fuels by adsorption via pi complexation with Cu (I)-Y and Ag-Y zeolites. Ind. Eng. Chem. Res., 2003, 42, 123 - 129.
    15. Yang, R. T.; Hernández-Maldonado, A. J.; Yang, F. H. Desulfurization of transportation fuels with zeolites under ambient conditions. Science, 2003, 301, 79 - 81.
    16. Al-Ansary, M.; Masad, E.; Strickland D. Sulphur Sustainable Applications: Initial Field Monitoring and Performance of Shell Thiopave Trial Road in Qatar. in Proceedings of the 2nd Annual Gas Processing Symposium (Eds.: F. Benyahia, F. Eljack), Elsevier, Amsterdam, 2010, pp. 121 - 130. (Cite from: Lim, J.; Pyun, J.; Char, K. Recent Approaches for the Direct Use of Elemental Sulfur in the Synthesis and Processing of Advanced Materials. Angew. Chem. Int. Ed. 2015, 54, 3249 - 3258.)
    17. Yin, Y. X.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chem. Int. Ed., 2013, 52, 13186 - 13200.
    18. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011, 334, 928 - 935.
    19. Steudel, R.; Steudel, Y. Polysulfide Chemistry in SodiumSulfur Batteries and Related Systems A Computational Study by G3X(MP2) and PCM Calculations. Chem. Eur. J., 2013, 19, 3162 - 3176.
    20. Liu, J. G.; Ueda, M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem., 2009, 19, 8907 - 8919.
    21. Griebel, J. J.; Namnabat, S.; Kim, E. T.; Himmelhuber, R.; Moronta, D. H.; Chung, W. J.; Simmonds, A. G.; Kim, K. J.; van der Laan, J.; Nguyen, N. A.; Dereniak, E. L.; Mackay, M. E.; Char, K.; Glass, R. S.; Norwood, R. A. New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers. J. Pyun, Adv. Mater.,2014, 26, 3014 - 3018.
    22. Musah, R. A.; Kim, E.; Kubec, R. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180, 1455 - 1456.
    23. Kim, S.; Kubec, R.; Musah, R. A. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J. Ethnopharmacol., 2006, 104, 188 - 192.
    24. Chaudhuri, R. G.; Paria, S. Synthesis of sulfur nanoparticles in aqueous surfactant solutions. J. Colloid Interface Sci., 2010, 343, 439 - 446.
    25. Rao, K. J.; Paria, S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv., 2013, 3, 10471 - 10478.
    26. Liu, G.; Niu, P.; Yin, L. C.; Cheng, H. M. alpha-Sulfur Crystals as a Visible-Light-Active Photocatalyst. J. Am. Chem. Soc., 2012, 134, 9070 - 9073.
    27. Jin, Y. H.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev., 2013, 42, 6634 - 6654.
    28. Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed., 2002, 41, 898 - 952.
    29. Steudel, R.; Eckert, B. Solid sulfur allotropes. Top. Curr. Chem., 2003, 230, 1 - 79.
    30. Steudel, R. The chemistry of organic polysulfanes R-S-n-R (n > 2). Chem. Rev., 2002, 102, 3905 - 3945.
    31. Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Acc. Chem. Res., 2012, 45, 1759 - 1769.
    32. Scopigno, T.; Yannopoulos, S. N.; Scarponi, F.; Andrikopoulos, K. S.; Fioretto, D.; Ruocco, G. Origin of the lambda transition in liquid sulfur. Phys. Rev. Lett., 2007, 99, 025701.
    33. Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries. J. J. Am. Chem. Soc., 2012, 134, 18510 - 18513.
    34. Meyer, B. Elemental Sulfur. Chem. Rev., 1976, 76, 367 - 388.
    35. Greer, S. C. Physical chemistry of equilibrium polymerization. J. Phys. Chem. B, 1998, 102, 5413 - 5422.
    36. Kozhevnikov, V. F.; Viner, J. M.; Taylor, P. C. Power law in properties of sulfur near the polymerization transition. Phys. Rev. B, 2001, 64, 214109.
    37. Ballone, P.; Jones, R. O. Density functional and Monte Carlo studies of sulfur. II. Equilibrium polymerization of the liquid phase. J. Chem. Phys., 2003, 119, 8704 - 8715.
    38. Kozhevnikov, V. F.; Payne, W. B.; Olson, J. K.; McDonald, C. L.; Inglefield, C. E. Physical properties of sulfur near the polymerization transition. J. Chem. Phys., 2004, 121, 7379 - 7386.
    39. Monaco, G.; Crapanzano, L.; Bellissent, R.; Crichton, W.; Fioretto, D.; Mezouar, M.; Scarponi, F.; Verbeni, R. Rubberlike dynamics in sulphur above the lambda-transition temperature. Phys. Rev. Lett., 2005, 95, 255502.
    40. Ruta, B.; Monaco, G.; Scarponi, F.; Fioretto, D.; Andrikopoulos, K. S. Brillouin light scattering study of polymeric glassy sulfur. J. Non-Cryst. Solids, 2011, 357, 563 - 566.
    41. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater., 2009, 8, 500 - 506.
    42. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure J. Am. Chem. Soc., 2000, 122, 10712 - 10713.
    43. Chen, S. R.; Zhai, Y. P.; Xu, G. L.; Jiang, Y. X.; Zhao, D. Y.; Li, J. T.; Huang, L.; Sun, S. G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochim. Acta, 2011, 56, 9549 - 9555.
    44. He, G.; Ji, X. L.; Nazar, L. High "C" rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci., 2011, 4, 2878 - 2883.
    45. Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed., 2012, 51, 3591 - 3595.
    46. Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium-Sulfur Batteries. Angew. Chem., 2012, 124, 3651 - 3655.
    47. Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries. Adv. Mater., 2011, 23, 5641 - 5644.
    48. Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun., 2011, 2, 325.
    49. Bao, W. Z.; Zhang, Z. A.; Zhou, C. K.; Lai, Y. Q.; Li, J. Multi-walled carbon nanotubes @ mesoporous carbon hybrid nanocomposites from carbonized multi-walled carbon nanotubes @ metal-organic framework for lithium sulfur battery. J. Power Sources, 2014, 248, 570.
    50. Tachikawa, N.; Yamauchi, K.; Takashima, E.; Park, J. W.; Dokko, K.; Watanabe, M. Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. Chem. Commun., 2011, 47, 8157 - 8159.
    51. Xin, S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan. Part. Part. Syst. Charact., 2013, 30, 321 - 325.
    52. Li, Z.; Yuan, L. X.; Yi, Z. Q.; Liu, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries. Nanoscale, 2014, 6, 1653 - 1660.
    53. Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Zhang, X. G. Encapsulating Sulfur into Hierarchically Ordered Porous Carbon as a High-Performance Cathode for Lithium-Sulfur Batteries. Chem. Eur. J., 2013, 19, 1013 - 1019.
    54. Xu, G. Y.; Ding, B.; Shen, L. F.; Nie, P.; Han, J. P.; Zhang, X. G. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A, 2013, 1, 4490 - 4496.
    55. Xu, G. Y.; Ding, B.; Nie, P.; Shen, L. F.; Dou, H.; Zhang, X. G. Hierarchically Porous Carbon Encapsulating Sulfur as a Superior Cathode Material for High Performance Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces, 2014, 6, 194 - 199.
    56. Zhang, B.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y. Novel Hierarchically Porous Carbon Materials Obtained from Natural Biopolymer as Host Matrixes for Lithium-Sulfur Battery Applications. ACS Appl. Mater. Interfaces, 2014, 6, 13174 - 13182.
    57. Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. Nano Lett., 2011, 11, 4462 - 4467.
    58. Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed., 2004, 43, 6296 - 6301.
    59. Desai, M. N.; Thanki, G. H.; Gandhi, M. H. Thiourea and its derivatives as corrosion inhibitors. ANTI-CORROS. METHOD M., 1968, 7, 12 - 16.
    60. Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Ferey, G.; Tarascon, J. M. Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures. J. Am. Chem. Soc., 2011, 133, 16154 - 16160.
    61. Wang, Z. Q.; Li, X.; Cui, Y. J.; Yang, Y.; Pan, H. G.; Wang, Z. Y.; Wu, C. D.; Chen, B. L.; Qian, G. D. A Metal-Organic Framework with Open Metal Sites for Enhanced Confinement of Sulfur and Lithium-Sulfur Battery of Long Cycling Life. Cryst. Growth Des., 2013, 13, 5116 - 5120.
    62. Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries. Nano Lett., 2011, 11, 4288 - 4294.
    63. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angew. Chem. Int. Ed., 2011, 50, 5904 - 5908.
    64. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angew. Chem., 2011, 123, 6026 - 6030.
    65. Fujimori, T.; Morelos-Gomez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Hong, S. Y.; Choi, Y. C.; Tomanek, D.; Kaneko, K. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun., 2013, 4, 2162.
    66. Korpiel, J. A.; Vidic, R. D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ. Sci. Technol., 1997, 31, 2319 - 2325.
    67. Liang, C. D.; Dudney, N. J.; Howe, J. Y. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chem. Mater., 2009, 21, 4724 - 4730.
    68. Bao, W. Z.; Zhang, Z. A.; Qu, Y. H.; Zhou, C. K.; Wang, X. W.; Li, J. Confine sulfur in mesoporous metal-organic framework @ reduced graphene oxide for lithium sulfur battery. J. Alloys Compd., 2014, 582, 334 - 340.
    69. Küster, F. W.; Heberlein, E. Beiträge zur Kenntnis der Polysulfide I. Z. Anorg. Chem., 1905, 43, 53 - 84.
    70. Arntson, R. H.; Dickson, F. W.; Tunell, G. Saturation curves of orthorhombic sulfur in the system S-NA2S-H2O at 25-degrees-C and 50-degrees-C. Science, 1958, 128, 716 - 718.
    71. Steudel, R. Inorganic polysulfides S-n(2-) and radical anions S-n(center dot-). Top. Curr. Chem., 2003, 231, 127 - 152.
    72. Giggenbach, W. Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg. Inorg. Chem., 1972, 11, 1201 - 1207.
    73. Kamyshny, A.; Gun, J.; Rizkov, D.; Voitsekovski, T.; Lev, O. Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at Different Temperatures by Rapid Single Phase Derivatization. Environ. Sci. Technol., 2007, 41, 2395 - 2400.
    74. Kamyshny, A.; Goifman, A.; Gun, J.; Rizkov, D.; Lev, O. Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at 25 °C:  A New Approach for the Study of Polysulfides' Equilibria. Environ. Sci. Technol., 2004, 38, 6633 - 6644.
    75. Kamyshny, A.; Ekeltchik, I.; Gun, J.; Lev, O. Method for the Determination of Inorganic Polysulfide Distribution in Aquatic Systems. Anal. Chem., 2006, 78, 2631 - 2639.
    76. Kamyshny, A.; Gun, J.; Rizkov, D.; Voitsekovski, T.; Lev, O. Equilibrium Distribution of Polysulfide Ions in Aqueous Solutions at Different Temperatures by Rapid Single Phase Derivatization. Environ. Sci. Technol., 2007, 41, 2395 - 2400.
    77. Goethals, E. J.; Moss, V.; Schmid, G. H. Sulfur-Containing Polymers, Thieme, Stuttgart, 1977.
    78. Kalaee, M. R.; Famili, M. H. N.; Mahdavi, H. Cure Kinetic of Poly (alkyltetrasulfide) Using a Rheological Method. Polym.-Plast. Technol. Eng., 2009, 48, 627 - 632.
    79. Hallensleben, M. L. Copolymers from disulphide polymers and vinyl monomers by radical chain transfer. Eur. Polym. J., 1977, 13, 437 - 440.
    80. Hallensleben, M. L. Copolymer formation by terminating living vinyl polymers with polydisulfides. J. Polym. Sci. Polym. Lett. Ed., 1977, 15, 619 - 622.
    81. Kishore, K.; Mukundan, T. Poly(styrene peroxide): an auto-combustible polymer fuel. Nature, 1986, 324, 130 - 131.
    82. Kishore, K.; Ganesh, K. Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers. Macromolecules, 1993, 26, 4700 - 4705.
    83. Ganesh, K.; Kishore, K. Chemical Degradation of Poly(styrene disulfide) and Poly(styrene tetrasulfide) by Triphenylphosphine. Macromolecules, 1995, 28, 2483 - 2490.
    84. Murthy, K. S.; Ganesh, K.; Kishore, K. Poly(styrene disulfide) and poly(styrene tetrasulfide) as chain transfer agents in the radical polymerization of styrene. Polymer, 1996, 37, 5541 - 5543.
    85. Ganesh, K.; Latha, R.; Kishore, K.; George, B.; Ninan, K. N. Stabilization of thermal degradation of poly(methyl methacrylate) by polysulfide polymers. J. Appl. Polym. Sci., 1997, 66, 2149 - 2156.
    86. Ramakrishnan, L.; Sivaprakasam, K. Synthesis, characterization, thermal degradation, and comparative chain dynamics studies of weak-link polysulfide polymers. J. Polym. Res., 2009, 16, 623 - 635.
    87. Ohno, A.; Oae, S.; Griesbaum, K. in Organic Chemistry of Sulfur (Ed.: S. Oae), Plenum, London, 1977.
    88. Ramakrishnan, L.; Sivaprakasam, K. Synthesis and characterization of branched polymers by a free radical approach using a novel ‘macroiniferter’. Polymer, 2005, 46, 5506 - 5513.
    89. Penczek, S.; Slazak, R.; Duda, A. Anionic copolymerisation of elemental Sulphur. Nature, 1978, 273, 738 - 739.
    90. Penczek, S.; Slazak, R.; Duda, A. Anionic copolymerisation of episulphides with elemental sulphur (reply). Nature, 1979, 280, 846 - 847.
    91. Aliev, A. D.; Zhumabaev, Z.; Krentsel, B. A. Anionic copolymerisation of episulphides with elemental Sulphur. Nature, 1979, 280, 846 - 846.
    92. Krein, E. B.; Aizenshtat, Z. Phase-transfer-catalyzed reactions between polysulfide anions and .alpha.,.beta.-unsaturated carbonyl compounds. J. Org. Chem., 1993, 58, 6103 - 6108.
    93. Steudel, R. The effect of S6 and S7 on the polymerization of liquid sulfur. Phosphorus Sulfur Silicon Relat. Elem., 1983, 16, 251 - 255.
    94. Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, A.; Theato, P.; Mackay, M. E.; Sung, Y. E.; Char, K.; Pyun, J. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem., 2013, 5, 518 - 524.
    95. Germain, J.; Rolandi, M.; Backer, S. A.; Fréchet, J. M. J. Sulfur as a Novel Nanopatterning Material: An Ultrathin Resist and a Chemically Addressable Template for Nanocrystal Self‐Assembly. Adv. Mater., 2008, 20, 4526 - 4529.
    96. Mochel, W. E.; Peterson, J. H. The Structure of Neoprene. II. Determination of End-Groups by Means of Radiosulfur. J. Am. Chem. Soc., 1949, 71, 1426 - 1432.
    97. Miyata, Y.; Sawada, M. Copolymerization of chloroprene with elemental sulphur. 1H n.m.r. study on the stereochemistry of the chloroprene unit adjacent to the sulphur unit. Polymer, 1988, 29, 1683 - 1688.
    98. Miyata, Y.; Sawada, M. Copolymerization of chloroprene with elemental sulphur. 1H n.m.r. study on the sequence length of polysulphide linkages in the copolymer. Polymer, 1988, 29, 1495 - 1500.
    99. Blight, L. B.; Currell, B. R.; Nash, B. J.; Scott, R. T. M.; Stillo, C. Chemistry of the modification of sulphur by the use of dicyclopentadiene and of styrene. Br. Polym. J., 1980, 12, 5 - 11.
    100. Ding, Y.; Hay, A. S. Copolymerization of elemental sulfur with cyclic(arylene disulfide) oligomers. J. Polym. Sci. Part A, 1997, 35, 2961 - 2968.
    101. Chung, W. J.; Simmonds, A. G.; Griebel, J. J.; Kim, E. T.; Suh, H. S.; Shim, I. B.; Glass, R. S.; Loy, D. A.; Theato, P.; Sung, Y. E.; Char, K.; Pyun, J. Elemental Sulfur as a Reactive Medium for Gold Nanoparticles and Nanocomposite Materials. Angew. Chem. Int. Ed., 2011, 50, 11409 - 11412.
    102. Ji, L.W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc., 2011, 133, 18522 - 18525.
    103. Song, M. K.; Zhang, Y. G.; Cairns, E. J. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance. Nano Lett., 2013, 13, 5891 - 5899.
    104. Ji, L.W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci., 2011, 4, 5053 - 5059.
    105. Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun., 2012, 48, 1233 - 1235.
    106. Nan, C. Y.; Lin, Z.; Liao, H. G.; Song, M. K.; Li, Y. D.; Cairns, E. J. Durable Carbon-Coated Li2S Core–Shell Spheres for High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc., 2014, 136, 4659 - 4663.
    107. Griebel, J. J.; Li, G.; Glass, R. S.; Char, K.; Pyun, J. Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li‐S batteries. J. Polym. Sci. Part A, 2015, 53, 173 - 177.
    108. Kim, E. T.; Chung, W. J.; Lim, J.; Johe, P.; Glass, R. S.; Pyun, J.; Char, K. One-pot synthesis of PbS NP/sulfur-oleylamine copolymer nanocomposites via the copolymerization of elemental sulfur with oleylamine. Polym. Chem., 2014, 5, 3617 - 3623.
    109. Bear, J. C.; Peveler, W. J.; McNaughter, P. D.; Parkin, I. P.; O'Briencd, P.; Dunnill, C. W. Nanoparticle–sulphur “inverse vulcanisation” polymer composites. Chem. Commun., 2015, 51, 10467 - 10470.
    110. Chen, X.; Dam, M. A.; Ono, K.; Mal, A. K.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A Thermally Re-mendable Cross-Linked Polymeric Material. Science, 2002, 295, 1698 - 1702.
    111. Murphy, E. B.; Wudl, F. The world of smart healable materials. Prog. Polym. Sci., 2010, 35, 223 - 251.
    112. Hager, M. D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U. S. Self‐Healing Materials. Adv. Mater., 2010, 22, 5424 - 5430.
    113. Liu, Y. L.; Chuo, T. W. Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym. Chem., 2013, 4, 2194 - 2205.
    114. Bekas, D. G.; Tsirka, K.; Baltzis, D.; Paipetis, A. S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B, 2016, 87, 92 - 119.
    115. Scheiner, M.; Dickens, T.; Okoli, O. Progress towards self-healing polymers for composite structural applications. Polymer, 2016, 83, 260 - 282.
    116. Kim, E. T.; Chung, W. J.; Lim, J.; Johe, P.; Glass, R. S.; Pyun, J.; Char, K. One-pot synthesis of PbS NP/sulfur-oleylamine copolymer nanocomposites via the copolymerization of elemental sulfur with oleylamine. Polym. Chem., 2014, 5, 3617 - 3623.
    117. Bear, J. C.; Peveler, W. J.; McNaughter, P. D.; Parkin, I. P.; O'Briencd, P.; Dunnill, C. W. Nanoparticle–sulphur “inverse vulcanisation” polymer composites. Chem. Commun., 2015, 51, 10467 - 10470.
    118. Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers. Macromolecules, 2010, 43, 2643 - 2653.
    119. Bowman, C. N.; Kloxin, C. J. Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew. Chem. Int. Ed., 2012, 51, 4272 - 4274.
    120. Maeda, T.; Otsuka, H.; Takahara, A. Dynamic covalent polymers: Reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci., 2009, 34, 581 - 604.
    121. Wojtecki, R. J.; Meador, M. A.; Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater., 2011, 10, 14 - 27.
    122. Otsuka, H.; Nagano, S.; Kobashi, Y.; Maeda, T.; Takahara, A. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem. Commun., 2010, 46, 1150 - 1152.
    123. Yoon, J. A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolay, R.; Zhang, Y.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules, 2012, 45, 142 - 149.
    124. Graf, T. A.; Yoo, J.; Brummett, A. B.; Lin, R.; Wohlgenannt, M.; Quinn, D.; Bowden, N. B. New Polymers Possessing a Disulfide Bond in a Unique Environment. Macromolecules, 2012, 45, 8193 - 8200.
    125. Tobolsky, A. V.; Beevers, R. B.; Owen, G. D. T. The viscoelastic properties of crosslinked poly(ethylene tetrasulfide). I. J. Colloid Sci., 1963, 18, 353 - 358.
    126. Tobolsky, A. V.; Owen, G. D. T.; Beevers, R. B. The viscoelastic properties of crosslinked poly(ethylene tetrasulfide) polymers. II. J. Colloid Sci., 1963, 18, 359 - 369.
    127. Tobolsky, A. V.; Takahashi, M.; Macknight, W. J. Relaxation of Disulfide and Tetrasulfide Polymers. J. Phys. Chem., 1964, 68, 787 - 790.
    128. Canadell, J.; Goossens, H.; Klumperman, B. Self-Healing Materials Based on Disulfide Links. Macromolecules, 2011, 44, 2536 - 2541.
    129. Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. Inherently Photohealable and Thermal Shape-Memory Polydisulfide Networks. ACS Macro Lett., 2013, 2, 694 - 699.
    130. Griebel, J. J.; Nguyen, N. A.; Namnabat, S.; Anderson, L. E.; Glass, R. S.; Norwood, R. A.; Mackay, M. E.; Char, K.; Pyun, J. Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. Acs. Macro. Lett., 2015, 4, 862 - 866.
    131. Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36, 1649 - 1696.
    132. Li, L.; Liang, R.; Li, Y.; Liu, H.; Feng, S. Hybrid thiol-ene network nanocomposites based on multi(meth)acrylate POSS. J. Colloid Interface Sci., 2013, 406, 30 - 36.
    133. Li, L.; Feng, S.; Liu, H. Hybrid lanthanide complexes based on a novel β-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization. RSC Adv., 2014, 4, 39132 - 39139.
    134. Li, L.; Liu, H. Rapid Preparation of Silsesquioxane-Based Ionic Liquids. Chem. Eur. J., 2016, 22, 4713 - 4716.
    135. Zhou, H.; Ye, Q.; Xu, J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front., 2017, 1, 212 - 230.
    136. Huang, M.; Hsu, C. H.; Wang, J.; Mei, S.; Dong, X.; Li, Y.; Li, M.; Liu, H.; Zhang, W.; Aida, T.; Zhang, W. B.; Yue, K.; Cheng, S. Z. D. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science, 2015, 348, 424 - 428.
    137. Zhang, W.; Huang, M.; Su, H.; Zhang, S.; Yue, K.; Dong, X. H.; Li, X.; Liu, H.; Zhang, S.; Wesdemiotis, C.; Lotz, B.; Zhang, W. B.; Li, Y.; Cheng, S. Z. D. Toward Controlled Hierarchical Heterogeneities in Giant Molecules with Precisely Arranged Nano Building Blocks. ACS Cent. Sci., 2016, 2, 48 - 54.
    138. Xu, Z.; Zhao, Y.; Wang, X.; Lin, T. A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on Diels-Alder chemistry. Chem. Commun., 2013, 49, 6755 - 6757.
    139. Chuo, T. W.; Liu, Y. L. Preparation of self-healing organic–inorganic nanocomposites with the reactions between methacrylated polyhedral oligomeric silsesquioxanes and furfurylamine. Compos. Sci. Technol., 2015, 118, 236 - 243.
    140. Zhang, X.; Bureau, B.; Lucas, P.; Boussard-Pledel, C.; Lucas, J. Glasses for Seeing Beyond Visible. Chem. Eur. J., 2008, 14, 432 - 442.
    141. Tanaka, K.; Yamane, H.; Mitamura, K.; Watase, S.; Matsukawa, K.; Chujo, Y. Transformation of Sulfur to Organic–Inorganic Hybrids Employed by POSS Networks and Their Application for the Modulation of Refractive Indices. J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 2588 - 2595.
    142. Liu, Y. L.; Fanchiang, M. H. Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. J. Mater Chem., 2009, 19, 3643 - 3647.
    143. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym. Chem., 2012, 3, 935 - 945.
    144. Li, H. Y.; Lee, Y. Y.; Chang, Y.; Lin, C. H.; Liu, Y. L. Robustly Blood‐Inert and Shape‐Reproducible Electrospun Polymeric Mats. Adv. Mater. Interfaces, 2015, 2, 1500065.
    145. Liu, C. T.; Liu, Y. L. pH-Induced switches of the oil- and water-selectivity of crosslinked polymeric membranes for gravity-driven oil–water separation. J. Mater. Chem. A, 2016, 4, 13543 - 13548.
    146. Mulligan, C. N.; Yong, R. N.; Gibbs, B. F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol., 2001, 60, 193 - 207.
    147. Dabrowski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 2004, 56, 91 - 106.
    148. Lavoie, R. A.; Jardine, T. D.; Chumchal, M. M.; Kidd, K. A.; Campbell, L. M. Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environ. Sci. Technol., 2013, 47, 13385 - 13394.
    149. Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol., 2003, 18, 149 - 175.
    150. Emanuelli, T.; Rocha, J. B. T.; Pereira, M. E.; Porciuncula, L. O.; Morsch, V. M.; Martins, A. F.; Souza, D. O. Effect of mercuric chloride intoxication and dimercaprol treatment on σ-aminolevulinate dehydratase from brain, liver and kidney of adult mice. Pharmacol. Toxicol., 1996, 79, 136 - 143.
    151. Gonzalez, P.; Dominique, Y.; Massabuau, J. C.; Boudou, A.; Bourdineaud, J. P. Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ. Sci. Technol., 2005, 39, 3972 - 3980.
    152. Fitzgerald, W. F.; Clarkson, T. W. Mercury and monomethylmercury: present and future concerns. Environ Health Perspect. Environmental Health Perspectives, 1991, 19, 159 - 166.
    153. Baeyens, R.; Ebinghous, R.; Vasilev, O. “Global And Regional Mercury Cycles: Sources, Fluxes And Mass Balances”, Kluwer Academic Publishers, 1996, 21.
    154. Kim, C. H.; Kim, S.-S.; Guo. F.; Hogan, T. P.; Pinnavia, T. Polymer Intercalation in Mesostructured Carbon. Advanced Materails, 2004, 16, 736 - 739.
    155. Mozaffarian, D.; Rimm, E. B. Fish intake, contaminants, and human health: evaluating the risks and the benefits.. JAMA, 2006, 296, 1885 - 1899.
    156. Horowitz, Y.; Greenberg, D.; Ling, G.; Lifshitz, M. Acrodynia: a case report of two siblings. Arch. Dis. Child, 2002, 86, 453 - 455.
    157. Rice, K. M.; Walker, E. M.; Wu, M.; Gillette, C.; Blough, E. R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health, 2014, 47, 74 - 83.
    158. Clarkson, T. W. The toxicology of mercury. Crit. Rev. Clin. Lab. Sci., 1997, 34, 369 - 403.
    159. Clarkson, T. W. Mercury: major issues in environmental health. Environmental Health Perspectives, 1992, 100, 31 - 38.
    160. Miretzkya, P.; Cirelli, A. F. Hg(II) removal from water by chitosan and chitosan derivatives: a review. J. Hazard. Mater., 2009, 167, 10 -23.
    161. Boening, D. W. Ecological effects, transport, and fate of mercury: a general review.. Chemosphere, 2000, 40, 1335 - 1351.
    162. Chang, T. C.; You, S. J.; Yu, B. S.; Kong, H. W. The fate and management of high mercury-containing lamps from high technology industry. J. Hazard. Mater., 2007, 141, 784 - 792.
    163. Overman, L. E. Mercury(II)‐ and Palladium(II)‐Catalyzed [3,3]‐Sigmatropic Rearrangements. Angew. Chem. Int. Ed. Engl., 1984, 23, 579 - 586.
    164. Morsali, A.; Masoomi, M. Y. Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev., 2009, 253, 1882 - 1905.
    165. Lau, L. D.; Rodriguez, R.; Henery, S.; Manuel, D.; Schewendiman, L. Photoreduction of mercuric salt solutions at high pH. Environ. Sci. Technol., 1998, 32, 670 - 675.
    166. Miretzky, P.; Fernandez Cirelli, A. Hg(II) removal from water by chitosan and chitosan derivatives: a review. J. Hazard. Mater., 2009, 167, 10 - 23.
    167. Matlock, M. M.; Howerton, B. S.; Henke, K. R.; Atwood, D. A. A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation. J. Hazard. Mater., 2001, 82, 55 - 63.
    168. Atwood, D. A.; Zaman, M. K. In Recent Developments in Mercury Science; Atwood, D. A., Ed.; Springer-Verlag: Berlin, Germany, 2006, 107 - 141.
    169. Bhakhar, M. S. ” Kinetic Studies On The Extraction Of Heavy Metals From Aqueous Streams Into Emulsion Liquid Membranes” , Ph.D. Thesis, The Maharaja Sayajirao University Of Baroda, Vadodara, Gujarat, India., 2012.
    170. Crockett, M. P.; Evans, A. M.; Worthington, M. J. H.; Albuquerque, I. S.; Slattery, A. D.; Gibson, C. T.; Campbell, J. A.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil. Angew. Chem. Int. Ed., 2015, 55, 1714 - 1718.
    171. Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. Porous inverse vulcanised polymers for mercury capture. Chem. Commun., 2016, 52, 5383 - 5386.
    172. Zuo, G.; Muhammed, M. Selective binding of mercury to thiourea-based coordinating resins. React. Funct. Polym., 1995, 27, 187 - 198.
    173. Tiravanti, G.; Petruzzelli, D.; Passino, R. Low and non waste technologies for metals recovery by reactive polymers. Waste Manage., 1996, 16, 597 - 605.
    174. Matlock, M. M.; Howerton, B. S.; Henke, K. R.; Atwood, D. A. J. A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation. Hazard. Mater., 2001, 82, 55 - 63.
    175. Yee, K. K.; Reimer, N.; Liu, J.; Cheng, S. Y.; Yiu, S. M.; Weber, J.; Stock, N.; Xu, Z. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. J. Am. Chem. Soc., 2013, 135, 7795 - 7798.
    176. Shah, R.; Devi, S. Preconcentration of mercury(II) on dithizone anchored poly(vinyl pyridine) support. React. Funct. Polym., 1996, 31, 1 - 9.
    177. Akay, S.; Kayan, B.; Kalderis, D.; Arslan, M.; Yagci, Y.; Kiskan, B. Poly(benzoxazine‐co‐sulfur): An efficient sorbent for mercury removal from aqueous solution. J. Appl. Polym. Sci., 2017,45306.
    178. Dumas, A. M.; Fillion, E. Meldrum’s Acids and 5-Alkylidene Meldrum’s Acids in Catalytic Carbon−Carbon Bond-Forming Processes. Acc. Chem. Res., 2009, 43, 440 - 454.
    179. Davidson, D.; Bernhard, S. A. The Structure of Meldrum's Supposed β-Lactonic Acid. J. Am. Chem. Soc., 1948, 70, 3426 - 3428.
    180. Lin, L. K.; Hu, C. C.; Su, W. C.; Liu, Y. L. Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chem. Commun., 2015, 51, 12760 - 12763.
    181. Arslan, M.; Kiskan, B.; Yagci, Y. Combining Elemental Sulfur with Polybenzoxazines via Inverse Vulcanization. Macromolecules, 2016, 49, 767 - 773.
    182. Crockett, M. P.; Evans, A. M.; Worthington, M. J. H.; Albuquerque, I. S.; Slattery, A. D.; Gibson, C. T.; Campbell, J. A.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil. Angew. Chem., Int. Ed., 2016, 55, 1714 -1718.
    183. Worthington, M. J. H.; Kucera, R. L.; Albuquerque, I. S.; Gibson, C. T.; Sibley, A.; Slattery, A. D.; Campbell, J. A.; Alboaiji, S. F. K.; Muller, K. A.; Young, J.; Adamson, N.; Gascooke, J. R.; Jampaiah, D.; Sabri, Y. M.; Bhargava, S. K.; Ippolito, S. J.; Lewis, D. A.; Quinton, J. S.; Ellis, A. V.; Johs, A.; Bernardes, G. J. L.; Chalker, J. M. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. Chem. Eur. J., 2017, 23, 16219 - 16230.
    184. Gomez, I.; Leonet, O.; Blazquez, J. A.; Mecerreyes, D. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries. ChemSusChem, 2016, 9, 3419 - 3425.
    185. Hoefling, A.; Lee, Y. J.; Theato, P. Sulfur-Based Polymer Composites from Vegetable Oils and Elemental Sulfur: A Sustainable Active Material for Li–S Batteries. Macromol. Chem. Phys., 2017, 218, 1600303.
    186. Lin, H. K.; Liu, Y. L. Reactive hybrid of polyhedral oligomeric silsesquioxane (POSS) and sulfur as a building block for self-healing materials. Macromol. Rapid Commun., 2017, 38, 1700051.
    187. Shukla, S.; Ghosh, A.; Roy, P. K.; Mitra, S.; Lochab, B. Cardanol benzoxazines–A sustainable linker for elemental sulphur based copolymers via inverse vulcanization. Polymer, 2016, 99, 349 - 357.
    188. Arslan, M.; Kiskan, B.; Yagci, Y. Recycling and Self-Healing of Polybenzoxazines with Dynamic Sulfide Linkages. Sci. Rep., 2017, 7, 5207.
    189. Kleine, T. S.; Nguyen, N. A.; Anderson, L. E.; Namnabat, S.; LaVilla, E. A.; Showghi, S. A.; Dirlam, P. T.; Arrington, C. B.; Manchester, M. S.; Schwiegerling, J.; Glass, R. S.; Char, K.; Norwood, R. A.; Mackay, M. E.; Pyun, J. High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene. ACS Macro Lett., 2016, 5, 1152 - 1156.
    190. Zhang, Y.; Griebel, J. J.; Dirlam, P. T.; Nguyen, N. A.; Glass, R. S.; Mackay, M. E.; Char, K.; Pyun, J. Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 107 - 116.
    191. Tasdelen, M. A.; Kiskan, B.; Yagci, Y. Photoinitiated free radical polymerization using benzoxazines as hydrogen donors. Macromol. Rapid Commun., 2006, 27, 1539 - 1544.
    192. Han, Y. J.; Lin, C. Y.; Liang, M.; Liu, Y. L. Radical and Atom Transfer Halogenation (RATH): A Facile Route for Chemical and Polymer Functionalization. Macromol. Rapid Commun., 2016, 37, 845 - 850.
    193. Arza, C. R.; Froimowiczab, P.; Ishida, Triggering effect caused by elemental sulfur as a mean to reduce the polymerization temperature of benzoxazine monomers. RSC Adv., 2016, 6, 35144 - 35151.
    194. Li, X.; Luo, X.; Liu, M.; Ran, Q.; Gu, Y. The catalytic mechanism of benzoxazine to the polymerization of cyanate ester. Mater. Chem. Phys., 2014, 148, 328 - 334.
    195. Kawaguchi, A. M.; Sudo, A.; Endo, T. Polymerization–Depolymerization System Based on Reversible Addition-Dissociation Reaction of 1,3-Benzoxazine with Thiol. ACS Macro Lett., 2013, 2, 1 - 4.
    196. Musa, A.; Kiskan, B.; Yagci, Y. Thiol-benzoxazine chemistry as a novel Thiol-X reaction for the synthesis of block copolymers. Polymer, 2014, 55, 5550 - 5556.
    197. Hemvichian, K.; Ishida, H. Thermal decomposition processes in aromatic amine-based
    198. polybenzoxazines investigated by TGA and GC–MS. Polymer, 2002, 43, 4391 - 4402.
    199. Sun, Z.; Huang, H.; Li, L.; Liu, L.; Chen, Y. Polythioamides of High Refractive Index by Direct Polymerization of Aliphatic Primary Diamines in the Presence of Elemental Sulfur. Macromolecules, 2017, 50, 8505 - 8511.
    200. McMillan, F. H. Conversion of Benzylamine to N-Substituted Thiobenzamides. J. Am. Chem. Soc., 1948, 70, 868 - 869.
    201. Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Efficient and Selective Multicomponent Oxidative Coupling of Two Different Aliphatic Primary Amines into Thioamides by Elemental Sulfur. Org. Lett., 2012, 14, 4274 - 4277.
    202. Lin, H. K.; Liu, Y. L. Sulfur Radical Transfer and Coupling Reaction to Benzoxazine Groups: A New Reaction Route for Preparation of Polymeric Materials Using Elemental Sulfur as a Feedstock. Macromol. Rapid Commun., 2018, 39, 1700832.
    203. Mathewa, B. P.; Aggarwa, N.; Kumar, R.; Nath, M. Synthesis and anti-bacterial activity of novel dihydrochromeno[8,7-e][1,3]oxazine-2(8H)-thiones. J. Sulfur Chem., 2014, 35, 31 - 41.
    204. Waisser, K.; Petrlíková, E.; Peøina, M.; Klimešová, V.; Kuneš, J.; Palát Jr., K.; Kaustová, J.; Dahse, H.-M.; Möllmann, U. A note to the biological activity of benzoxazine derivatives containing the thioxo group. Eur. J. Med. Chem., 2010, 45, 2719 - 2725.
    205. Wang, C.; Chen, S.; Zhao, S. Inhibition Effect of AC-Treated, Mixed Self-Assembled Film of Phenylthiourea and 1-Dodecanethiol on Copper Corrosion. J. Electrochem. Soc., 2004, 151, B11 – B15.
    206. Shams El Din, A. M.; El Hosary, A. A.; Saleh, R. M.; Abd El Kader, Peculiarities in the Behaviour of Thiourea as corrosion‐inhibitor. Mater. Corros., 1997, 28, 26 - 31.
    207. Dehri, I.; Ozcan, M. The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds. Mater. Chem. Phys., 2006, 98, 316 - 323.
    208. Sabaa, M. W.; Mohamed, R. R.; Yassin, A. A. Organic thermal stabilizers for rigid poly(vinyl chloride) VIII. Phenylurea and phenylthiourea derivatives. Polym. Degrd. Stab., 2003, 81, 37 - 45.
    209. Kausar, A.; Zulfiqar, S.; Sarwar, M. L. Recent developments in sulfur-containing polymers. Polym. Rev., 2014, 54, 185 - 267.
    210. Kausar, A.; Zulfiqar, S.; Ishaq, M.; Ahmad, Z.; Sarwar, M. L. Synthesis and thermal behavior of novel poly(thiourea-amide)s derived from 1-(4-aminobenzoyl)-3- (3-aminophenyl) thiourea. High Perform. Polym., 2011, 23, 424 - 433.
    211. Agirbas, H.; Sagdinc, S.; Kandemirli, F.; Ozturk, D. Synthesis, IR spectral studies and quantum-chemical calculations on 1,2-dihydronaphto[1,2-e]oxazine-3-thiones and 3,4-dihydrobenzo[e][1,3]oxazine-2-thione. J. Mol. Struct., 2007, 830, 116 - 125.
    212. Vengurlekar, S.; Sharma, R.; Trivedi, P. A Study on the Biological Activity of 2-thioxo-imidazolidin-4-ones. Lett. Drug Des. Discov., 2012, 9, 549 - 555.
    213. Petrlíková, E.; Waisser, K.; Doležal, R.; Holý, P.; Gregor, J.; Kunes, J.; Kaustova, J. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6. Chem. Papers, 2011, 65, 352 - 366.
    214. Jayanthi, P.; Lalitha, P. Lipophilicity of few chromen-2-ones and chromene-2-thiones by Hyperchem 7.0 AND Alogps 2.1. Pharma Sci. Monitor, 2011, 2, 210 - 215.
    215. Thomson, J. W.; Nagashima, K.; Macdonald, P. M.; Ozin, G. A. From sulfur-amine solutions to metal sulfide nanocrystals: peering into the oleylamine-sulfur black box. J. Am. Chem. Soc., 2011, 133, 5036 - 5041.
    216. Davis, R.; Nakshbendi, H. Sulfur in Amine Solvents. J. Am. Chem. Soc., 1962, 84, 2085 - 2090.
    217. Hodgson, W. G.; Bucklearn, S. A.; Peters, G. Free Radicals in Amine Solutions of Elemental Sulfur. J. Am. Chem. Soc., 1963, 85, 544 - 546.
    218. Chauhan, L. R.; Gunasekaran, G. Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros. Sci., 2007, 49, 1143 – 1161.

    QR CODE