簡易檢索 / 詳目顯示

研究生: 李奇勳
Chi-Hsin Lee
論文名稱: 高介電氧化物應用在鍺金氧半元件-X光光電子能譜和電性之研究
High-κ dielectrics on germanium MOS - XPS and electrical characteristics
指導教授: 洪銘輝
Minghwei Hong
郭瑞年
J. Raynien Kwo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 61
中文關鍵詞: 高介電係數X光光電子能譜
外文關鍵詞: high k, Germanium, XPS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鍺的電子和電洞遷移率分別為矽的三倍和四倍,因此是下一世代被用來取代矽元件中的通道層。但是自然形成的二氧化鍺熱穩定性差且溶於水,並不適合用在金氧半場效電晶體的製程。故利用高介電係數的氧化層取代二氧化鍺來改善元件的電子特性。在本次的工作中,使用分子束磊晶成長Ga2O3(Gd2O3)混合氧化物(GGO)、氧化鋁(Al2O3)生長在鍺晶圓上。利用X光光電子能譜分析儀和穿遂式電子顯微鏡來分析氧化物的特性以及氧化物和半導體間介面的電子結構。我們發現經過400oC超高真空加熱表面處理,可去除鍺表面自然生成的氧化物。
    在分子束磊晶方面,由TEM也可看出氧化層和半導體間無額外的二氧化鍺界面層產生,而且氧化物在高溫製程中仍能保有高度非結晶性,這有助於縮小積體電路線寬和應用在實際元件製程。XPS則分析出氧化物和半導體界面相互反應的情況。電性方面,分子束磊晶成長GGO的介電常數為14.5,低漏電流為2×10-9 A/cm2。界面間的能量態密度經由Terman method計算約為2x1012 cm-2eV-1。


    Germanium with its electron and hole mobility almost three and four times of those in Silicon, respectively, is now being considered as a high mobility channel to replace Si. However, the native oxides due to their poor thermal stability have been attributed to insufficient passivation of the Ge surface, which has hindered the fabrication of Ge metal oxide semiconductor field effect transistor (MOSFET). High-κ dielectrics were used to replace native Ge oxides to improve the electrical properties. In the present work, two high-κ dielectrics as Ga2O3 (Gd2O3) mixed oxide (GGO), Al2O3 grown by molecular beam epitaxy (MBE) have been deposited on a germanium substrate. The oxide/Ge interfaces were analyzed using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). By them, we have found that the native oxides can be removed with the annealing temperatures up to 400□C.
    The GGO and Al2O3 deposited by our multi-chamber MBE system can effectively passivate the Ge surface without forming an interfacial layer of GeO2 according to the HRTEM pictures. The robustness of the interface is the cornerstone for further device fabrication and scaling. Those oxides also show high thermal stability of oxide and interface. The leakage current density of MBE grown GGO is 2×10-9 A/cm2 with the κ value 14.5. The interface trap density calculated by the Terman method is 1x1012 cm-2eV-1 near the midgap.

    Chinese abstract I English abstract II Acknowledgement III Table of contents IV Table captions VII Figure captions VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 High-k dielectrics and germanium substrate 3 1.3 Objectives of the project 6 Chapter 2 Theory and Instrumentation 8 2.1 Fundamentals of the metal oxide semiconductor 8 2.1.1 Introduction 8 2.1.2 Structure and principle of operation 8 2.1.3 MOS capacitance 12 2.1.4 Minority carrier response to the ac gate voltage 14 2.2 Multi-chambers MBE Systems 15 2.2.1 Molecular beam epitaxy (MBE) 16 2.2.2 RHEED 17 2.2.3 X-ray photoelectron spectroscopy (XPS) 19 2.3 X-ray photoelectron spectroscopy (XPS) 19 2.3.1 Instrumentation 19 2.3.1.1 Source 19 2.3.1.2 Electron Energy Analyzer 20 2.3.2 primary structure 20 2.3.3 angular effect 21 2.3.3.1 Enhancement of surface sensitivity 22 2.3.3.2 Depth profiling in XPS 22 Chapter 3 Experimental Procedures 24 3.1 Surface cleaning 24 3.2 Oxide deposition 25 3.2.1 MBE-GGO deposition 25 3.2.2 MBE-Al2O3 deposition 25 3.3 XPS analysis 26 3.4 Cross-sectional TEM 26 3.5 Metal electrode deposition 27 3.6 Electrical properties 28 Chapter 4 Results and Discussion 29 4.1 Chemical analysis 29 4.1.1 surface cleaning of germanium substrate 29 4.1.2 MBE-GGO on Ge 31 4.1.3 MBE-Al2O3 on Ge 49 4.2 Electrical properties 53 Chapter 5 Conclusion 58 Chapter 6 References 59

    [1] “Device Electronics for Integrated Circuits” edited by Muller, Richard S., and Theodore I. Kamins, John Wiley & Sons (1986)
    [2] Intel Corporation, website: http://www.intel.com
    [3] Chang-Hoon Choi, Ki-Young Nam, Zhiping Yu, and Robert W. Dutton, IEEE Trans. Electron Devices 48, 2823 (2001).
    [4] Minjoo L. Lee, Eugene A. Fitzgerald Mayank T. Bulsara, Matthew T. Currie, and Anthony Lochtefeld, J. Appl Phys 97, 011101 (2005)
    [5] Gila, B.P. “High Performance Devices”, 2000 IEEE/Cornell Conference on 2000, p182 (2000.)
    [6] M. Meuris, A. Delabie, S. Van Elshocht, S. Kubicek, P. Verheyen, B. De Jaeger, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, R.L. Puurunen, Materials Science in Semiconductor 8, 203(2005)
    [7] Simon M. Sze, Kwok K. Ng. “Semiconductor Device Physics and Technology” Wiley-Interscience (1936)
    [8] New Semiconductor Materials. Characteristics and Properties http://www.ioffe.ru/
    [9] D. K. Schroder, “Semiconductor material and device characterization” 3rd ed. Wiley Interscience (2006)
    [10] E. H. Nicollian, J. R. Brews, “MOS Physicas and Technology” 3rd ed. Wiley Interscience (1982)
    [11] New Semiconductor Materials. Characteristics and Properties http://www.ioffe.ru/
    [12] Simon M. Sze, Kwok K. Ng. “Semiconductor Device Physics and Technology” Wiley-Interscience (1936)
    [13] DR. EBERL MBE-KOMPONENTEN GMBH http://www.mbe-components.com/index.html
    [14] 堀尾研究室http://www.daido-it.ac.jp/~horio/index.html
    [15] John F. Watts, John Wolstenholme, ‘An introduction to Surface analysis by XPS and AES’, John Wiley & Sons Ltd (2003)
    [16] M. P. Seah, ‘Electron and ion energy analysis’, Chapter 3 in Methods of surface Analysis, Cambridge University Press, Cambridge (1989)
    [17] D. Briggs, ‘Practical Surface Analysis’, Chapter 4, Thomson Press, New Delhi (1990)
    [18] Evangelou, E.K.a; Mavrou, G.b; Dimoulas, A.b; Konofaos, N.c, Solid-State Electronics 51 164 (2007)
    [19] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, Appl. Phys. Lett. 75, 823 (1999)
    [20] Dimoulas A, Brunco DP, Ferrari S, Seo JW, Panayiotatos Y, Sotiropoulos A, Conard T, Caymax M, Spiga S, Fanciulli M, Dieker C, Evangelou EK, Galata S, Houssa M, Heyns MM, Thin Solid Films 515 , 6337 (2007)
    [21] Lee, K. Y, Appl. Phys. Lett. 89 222906 (2006)
    [22] A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, and N. Boukos, M. Houssa and M. Caymax, Appl. Phys. Lett. 86, 032908 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE