簡易檢索 / 詳目顯示

研究生: 范姜雅藍
Fan, Jiang, YaLan
論文名稱: 建構於Facebook上之餐飲商店推薦系統
A Restaurant Recommendation System on Facebook
指導教授: 區國良
Ou, Kuo-Liang
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: Facebook機器學習推薦系統餐飲資訊社群網路
外文關鍵詞: Facebook, Machine Learning, Recommend System, Delicious Food, Social networks
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著社群網路(Social network) 的興起,使得 Facebook、Twitter、Google+等等的社群網站快速的興起且廣為接受與喜愛,尤其是 Facebook 具備了娛樂性、社群成熟度、介面豐富、詳細的用戶資訊以及具有應用程式擴充性等等,漸漸改變了使用網路服務的習慣及人際互動的方式。使用者藉由在塗鴨牆(wall)上發表資訊並提供當下的需求作為朋友之間交互的分享與傳播,並提昇友誼之間的互動關係。
    本論文建構了一個 Facebook 上即時餐飲商店推薦系統,利用擷取 Facebook 使用者之文字訊息以及文字訊息辨識之相關研究,以機器學習法針對文章的訊息內容及即時蒐集到的餐飲需求,在多維空間中以分群法(clustering)推薦適合的餐飲商店,同時,使用者也可以將該餐飲商店資訊進行分享並作為提昇朋友之間的互動聯繫的議題素材。
    本論文在實驗期間針對 57名受測者中蒐集了 1443篇留言,系統在當中辨識出有584 篇是符合餐飲商店需求,也從使用者的回覆訊息以及系統觸發認同、系統推薦認同、系統綜合滿意表的問卷中分析其正確率,每個項目分別至少都有達70%以上的滿意度。此外還針對實驗當中的數據以及開放性問卷來做個案分析,發現使用者對於本系統都覺得餐廳歸類明確,亦能提昇朋友之間的互動情誼,使用者也能夠感到有興趣、實用並且持續使用本系統。


    Social network, for example, Facebook, Twitter and Google+, provide novel cannels for enhancing the interpersonal relationships. The most popular one is Facebook, which provides various games, virtual communities, friendly user interface, well scalability for programming and an easy way of obtaining friend’s status.
    This paper propose a restaurant recommendation system on the Facebook. A user's messages filter is constructed for feeding back a restaurant recommendation on users’ wall of Facebook. The content of recommendation is composed by the results of clustering the restaurants and users demands on line. The experiments collected 1443 messages which were posted by 57 Facebook users during 7 days. 584 messages were related with the restaurants information inquires, and a recommendation was delivered for each message. The questionnaires illustrated that up to 70% satisfaction after the experiment, and the friendship between users friends on Facebook were improved by analyzing the content and frequency of interactions.

    目錄 誌謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 VIII 第一章. 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 論文架構介紹 5 第二章. 相關研究 6 第一節 社群經營 6 第二節 社群分析 8 第三節 廣告網頁行為 11 第四節 資料探勘(Data Mining) 13 一、分群演算法K-Means 13 二、歐幾里得距離(Euclidean distance)14 第三章. 研究方法 16 第一節 研究流程 16 第二節 研究對象、環境與限制 19 第三節 應用於餐飲商店推薦系統 20 第四節 建構網路社群分享互動系統 26 第五節 建構網路社群行為分析系統 27 第四章 實驗結果 29 第一節 應用於餐飲商店推薦系統結果分析 29 第二節 網路社群分享互動系統結果分析 36 第三節 網路社群行為分析系統結果分析 41 第五章 結論與建議 50 附錄 52 附錄1【使用者餐廳需求問卷】 52 附錄2【使用者資訊分享系統回饋問卷】 53 參考資料 61 圖目錄 圖 1 波仕特線上市調團購網 2 圖 2 論文架構圖 5 圖 3 社群網站與主要社群網站接觸率 8 圖 4 NetDraw網絡密度圖 10 圖 5 K-means 範例 14 圖 6 系統整體架構圖 16 圖 7 系統流程圖─斷詞斷句系統 17 圖 8 系統流程圖─餐飲商店推薦系統 19 圖 9 使用者於塗鴨牆上留言 20 圖 10 餐廳維度資料 21 圖 11 關鍵字觸發並貼在使用者塗鴨牆 22 圖 12 悅趣式問卷應用程式畫面 23 圖 13 分群後的結果 24 圖 14 餐飲商店推薦結果與使用者互動 25 圖 15 網路社群分享互動系統圖 27 圖 16 距離與使用者評分之相關圖 36 圖 17 SNA人際關係網路圖 42 圖 18 人與餐廳SNA關係圖 43 圖 19 朋友之間的社群SNA關係圖 44 表目錄 表 1 NetDraw相關研究 10 表 2 常見推薦的系統模式 11 表 3 CKIP相關研究 18 表 4 資訊分享系統整體成效回饋問卷 26 表 5 系統觸發認同程度表 29 表 6 系統推薦認同程度表 30 表 7 系統綜合滿意度表 31 表 8 Cronbach's Alpha(α)值 32 表 9 使用者異常評分數據表 33 表 10 使用者異常觸發統計表 33 表 11 系統推薦準確度認同程度表 34 表 12 斷詞模組成效統計表 34 表 13 距離與使用者評分之相關性 35 表 14 距離與使用者評分平均數 35 表 15 實驗之互動及評分例子一 37 表 16 實驗之互動及評分例子二 38 表 17 實驗之互動及評分例子三 39 表 18 使用者餐廳分群統計 40 表 19 應用程式問卷內容(前後5%) 41 表 20 整體問卷內容(開放性問卷部分) 45 表 21 整體問卷內容(量表問卷部分) 46 表 22 使用者餐廳需求問卷 52 表 24 實驗之互動及評分 53

    Ansari, Asim, Essegaier, Skander, & Kohli, Rajeev. (2000). Internet Recommendation Systems. Journal of Marketing Research, 37(3), 363-375.
    Armstrong, A. G., & Hagel III, J. (1997). Expanding markets through virtual communities: Harvard Business Review Press.
    Batagelj, & Mrvar. (2007). Pajek: Program for Large Network Analysis, from http://vlado.fmf.uni-lj.si/pub/networks/pajek/
    BloggerAds. (2009). Facebook轉型[流行文化]不用就落伍啦 Retrieved 2011年9月8日, from http://www.bloggerads.net/AdsPortal/BlogTell/8
    Borgatti, S. P., Everett, M. G., & Freeman, L. C. . (2002). Ucinet for Windows: Software for Social Network Analysis: Harvard Analytic Technologies.
    Borgatti, S.P. (1998). What Is Social Network Analysis?
    Chang, A. M., Kannan, P. K., & Whinston, A. B. (1999). Consumers' Extent of Evaluation in Brand Choice. The Journal of Business, University of Chicago Press, 72(2), 229-251.
    CheckFacebook. (2012). Facebook Online Population Retrieved May 8, 2012, from http://www.checkfacebook.com/
    Fernback, J. (2007). Beyond the diluted community concept: a symbolic interactionist perspective on online social relations. New Media & Society, 9(1), 49-69.
    Freitas, Alex A. (2001). A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery Advances in evolutionary computing (pp. 819 - 845): Springer-Verlag New York, Inc. New York, NY, USA ©2003.
    Holzner, Steven. (2009). Facebook Marketing: Leverage Social Media to Grow Your Business: Que Publishing.
    Hsu, Chin-Lung, & Lin, Judy Chuan-Chuan. (2008). Acceptance of Blog Usage: The Roles of Technology Acceptance, Social Influence and Knowledge Sharing Motivation. Information and Management, 45, 65-74.
    Jenkins, Henry. (2006). Convergence culture: Where old and new media collide: New York: New York University Press.
    JOLY, Adrien, MARET, Pierr, & Daigremont, Johann. (2009). CONTEXT-AWARENESS, THE MISSING BLOCK OF SOCIAL NETWORKING. International Journal of Computer Science and Application, 6(2), 50-65.
    Ko, Hanjun, Cho, Chang-Hoan, & Roberts, Marilyn S. (2005). Internet uses and Gratifications: A Structural Equation Model of Internet Advertising. Journal of Advertising, 34(2), 57-70.
    Levy, P. (1997). Collective intelligence: Mankind's emerging world in cyberspace.: Cambridge, Mass: Perseus Books.
    Li, Hairong, & Leckenby, John D. (2007). Examining the effectiveness of Internet Advertising Formats. In Esther Thorson David W. Schumann (Ed.), in Internet Advertising: Theory and Research, eds. (pp. 201-222): Mahwah, NJ: Lawrence Erlbaum.
    Rheingold, Howard. (1993). Virtual community: Homesteading on the electronic frontier.: Addison-Wesley Inc.
    Wan-Ling, Chen. (2008). Internet Recommendation System-Take Amazon.com as an Example.
    毛慶禎. (2007). 導論 - 網路社群, from http://www.lins.fju.edu.tw/mao/icommunity/introduction.htm
    王維聰, & 張文鴻. (2009). 虛擬商品與電子商務.
    古必鵬. (2008). 網路社群資訊分享行為之探討:以GOGOBOX網路社群平台為例. Paper presented at the 2008年圖書資訊暨傳播學進行中論文發表會.
    田宜歆. (2008). 輔助教師以機器學習分析及評量學生鋼琴演奏技巧之研究.
    波仕特線上市調網. (2009). Pollster波仕特線上市調:逾五成國人偏愛團購美食類商品, from http://mypaper.pchome.com.tw/grejbrq/post/1320220661
    康瑜芳. (2006). 國中資訊組長之社會網路分析. Paper presented at the 國立臺灣師範大學 資訊教育學系碩士論文.
    戚栩僊. (2010). 社群網站使用與社群媒體行銷使用者反應-以《Facebook》廣告與虛擬品牌社群為例. Paper presented at the 2010數位創世紀:E世代與資訊科技 學術實務國際研討會.
    陳宛伶. (2008). 線上新產品推薦系統-以亞馬遜網路書店為例. Paper presented at the 國立台灣大學 國際企業學研究所碩士論文.
    陳東和, & 黃謙順. (2008). 運用資料採礦技術於銀行基金客戶分群之研究. Paper presented at the 私立中國文化大學 資訊管理研究所碩士論文.
    曾馨瑩. (2010). 網路社群分析架構:以 Facebook 為例. Paper presented at the 2010 台灣資訊社會研究學會年會暨學術研討會.
    劉忠陽, & 龔涵君. (2011). Facebook對消費者忠誠度影響之研究-以PLaiN男性服飾店為例. Paper presented at the 第八屆2011數位創世紀國際學術實務研討會.
    蔡至欣, & 賴玲玲. (2011). 虛擬社群的資訊分享行為. 圖書資訊學刊, 9(1), 161-196.
    蘇軍維, 潘雅婷, & 劉寧漢. (2010). 基於權重式歐幾里德距離之音樂推薦系統設計. Paper presented at the International Conference on Advanced Information Technologies (AIT).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE