研究生: |
馮秉森 Feng, Bin-sen |
---|---|
論文名稱: |
應用於估測無線網路參數之階層式支持向量機平行演算法 Determination of Wireless Networks Parameters Through Parallel Hierarchical Support Vector Machines |
指導教授: |
張適宇
Chang, Shih-yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 無線網路 、頻道估測 、位置量測 、支持向量機 、平行演算法 |
外文關鍵詞: | wireless networks, channel noise estimation, node localization, support vector machine, parallel learning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文考慮兩個問題:(1)在室內無線網路環境中估測節點的實體位置,(2)估測無線通訊網路的雜訊強度。在無線網路環境中,正確評估這些參數對許多工作而言是件重要的事,例如:網路管理、事件偵測、位置相關服務以及路由選擇。在此篇論文中,我們設計了 H-SVM (Hierarchical Support Vector Machine) 架構來解決以上問題。H-SVM具有以下優點:第一、因為 H-SVM 的階層式架構,它可以提供有效率的分散式計算程序。第二、 H-SVM 只需要簡單的網路資訊即可用來判斷這些參數,而不需要額外的硬體支援。第三、在 H-SVM 的架構下,估測誤差的平均值及標準差可保證在一定範圍之內。並且,我們設計了平行式學習演算法來降低計算複雜度,使在SVM的訓練資料為 n 時,計算複雜度由原本的 O(n^3) 降低為 O(n^2)。最後,模擬結果將驗證 H-SVM 的有效性。
Abstract—We consider the problems of (1)estimating the physical locations of nodes in an indoor wireless network, (2)estimating the channel noise in a MIMO wireless network, since knowing these parameters are important to many tasks of a wireless network such as network management, event detection, location-based service, and routing. A hierarchical support vector machines (H-SVM) scheme is proposed with the following advantages. First, H-SVM offers an efficient evaluation procedure in a distributed manner due to hierarchical structure. Second, H-SVM could determine these parameters based only on simpler network information, e.g., the hop counts, without require particular ranging hardware. Third, the exact mean and the variance of the estimation error introduced by HSVM
are derived which are seldom addressed in previous works. Furthermore, we present a parallel learning algorithm to reduce the computation time required for the proposed H-SVM. Thanks for the quicker matrix diagonization technique, our algorithm can reduce the traditional SVM learning complexity from O(n3) to O(n2) where n is the training sample size. Finally, the simulation results verify
the validity and effectiveness for the proposed H-SVM with parallel learning algorithm.
[1] Q. Sun and D. C. Cox and H. C. Huang and A. Lozano, '\Estimation of continuous °at fading MIMO channels", IEEE Trans. on Wireless Commu., pp. 549-553, vol. 1, no. 3, Oct. 2002.
[2] J. Baltersee and G. Fock and H. Meyr, \Achievable rate of MIMO channels with data-aided channel estimation and perfect interleaving", IEEE Journ. on Selec. Areas of
Commu., pp. 2358-2368, vol. 19, no. 12, Dec. 2001.
[3] , V. Vapnik, \The nature of statistical learning theory (2nd ed)", Springer, 1999.
[4] D. A. Tran and T. Nguyen, \Localization In Wireless Sensor Networks Based on Support Vector Machines", IEEE Trans. on Parallel and Distributed Systems, vol. 19, issue 7, pp. 981-994, July 2008.
[5] P. Aarabi and G. Shi, \Phase-Based Dual-Microphone Robust Speech Enhancement", IEEE Trans. on Systems, Man, and Cybemetics, pp. 1763-1773, Vol. 34, No. 4, August 2004.
[6] N. Malhotra, M. Krasniewski, C. Yang, S. Bagchi, and W. Chappell, \Location Estimation in Ad Hoc Networks with Directional Antennas", Proceedings IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 633-642, June 2005.
[7] Y. Wang and S. Lederer and J Gao, \Connectivity-Based Sensor Network Localization with Incremental Delaunay Re‾nement Method", Proceedings IEEE INFOCOM, pp. 2401-2409, Apr. 2009.
[8] Y. Zhu and S. J. Gortler and D. Thurston, Sensor Network Localization Using Sensor Perturbation", Proceedings IEEE INFOCOM, pp. 2796-2800, Apr. 2009.
[9] X. Nguyen and M. Jordan and B. Sinopoli, A Kernel-Based Learning Approach to Ad Hoc Sensor Network Localization", ACM Transations on Sensor Networks, vol. 1, issue 1, pp. 134-152 , Aug. 2005.
[10] M. J. F. Garcia and J. L. Rojo-Alvarez and F. Alonso-Atienza and M. Martinez-Ramon, Support vector machines for robust channel estimation in OFDM", IEEE Signal Processing Letters, pp. 297-400, vol. 13, issue 7, July 2006.
[11] S. Chen, A. Samingan, and L. Hanzo, \Support vector machine multiuser receiver for DS-CDMA signals in multipath channels", IEEE Transations on Neural Networks, vol. 12, issue 3, pp. 604-611, May 2001.
[12] , A Ziehe and P. Laskov and G. Nolte and K-R. Muller, \A Fast Algorithm for Joint Diagonization with Non-Orthogonal Transformations and its Application to Blind Source Separation", The Journal of Machine Learning Research, vol. 5, pp. 777-800, July 2004.
[13] N. Megiddo and A. Tamir., \Linear time algorithms for some separable quadratic programming problems", Oper. Res. Lett, pp. 203-211, Aug. 1993.
[14] \The Network Simulator - ns-2", http://www.isi.edu/nsnam/ns/.
[15] C. J. Lin, \ALIBSVM { A Library for Support Vector Machines", http://www.csie.ntu.edu.tw/ cjlin/libsvm/, Apr. 2009.
[16] , T. F. Coleman and Y. Li, \A Re°ective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables", SIAM Jounal on Optimization (SIOPT), vol. 6, issue 4, pp. 1040-1058, November 1996.
[17] S. D. Chitte and S. Dasgupta and Z. Ding, \Distance Estimation From Received Signal Strength Under Log-Normal Shadowing: Bias and Variance", IEEE Signal Processing
Letters, vol. 16, pp. 216-218, Mar. 2009.
[18] R. K. Martin and J. S. Velotta and J. F. Raquet, Bandwidth E±cient Cooperative TDOA Computation for Multicarrier Signals of Opportunity", IEEE Transactions on
Signal Processing, vol. 57, pp. 2311-2322, Jun. 2009.
[19] D. Niculescu and B. Nath, \Ad hoc positioning system (APS) using AOA", Proceedings IEEE INFOCOM, vol. 3, pp. 1734-1743 , Apr. 2003.
[20] D. Moore and D. Rus and J. Leonard and S. Teller, \Robust Distributed Network Localization with Noisy Range Measurements", Proceedings ACM SenSys, pp. 50-61, Nov. 2004.
[21] N. Lanenan, D. N. C. Tse, and G. W. Wornell, \Cooperative diversity in wireless networks: e±cient protocols and outage behavior", IEEE Trans. on Infor. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[22] N. Megiddo, \Linear programming in linear time when the dimension is ‾xed", Journal of ACM, vol. 31, pp. 114-127, 1984.
[23] , H. J. Shin and S. Cho, \Fast Pattern Selection Algorithm for Support Vector Classi‾ers: Time Complexity Analysis", The 4th Inter. Conf. Intelligent Data Engineering and Automated Learning, Lecture Notes in Computer Science (LNCS 2690), pp. 1008-1015, August 2003.
[24] , T. Joachims, \Text Categorization with Support Vector Machine: Learning with Many Relevant Features", Proceedings European Machine Learning Conference, pp. 137-142, 1998.
[25] , N. Cristianini and J. Shawe-Taylor, \An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods", Cambridge Univ. Press, 2003.
[26] N. Cristianini, J. Shawe-Taylor, \An introduction to support vector machines and other kernel-based learning methods", Cambridge University Press, 2000.