簡易檢索 / 詳目顯示

研究生: 施柏仰
Shih, Po-Yang
論文名稱: 透過蛋白質工程學設計高ATP水解活性之OLA1突變
Engineering an Obg-like ATPase 1 (OLA1) Mutant with Higher Activity
指導教授: 鄭惠春
Cheng, Hui-Chun
口試委員: 孫玉珠
Sun, Yuh-Ju
邱于芯
Chiu, Yu-Hsin
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 46
中文關鍵詞: 三磷酸腺苷水解活性三磷酸鳥苷水解活性三磷酸腺苷水解酶三磷酸鳥苷水解酶
外文關鍵詞: OLA1, Ras, GTPase hydrolysis, ATPase hydrolysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Obg 家族蛋白是GTPase中的一大成員,並且和蛋白轉譯的執行功能有關。其中YcHF為此大家族的一分支,然而其水解ATP的效率卻比GTP高很多。在人類中與YcHF同為同源蛋白被稱為obg-like ATPase 1 (OLA1),OLA1是由coiled-coil domain、TGS domain 和 G domain所組成的,其中G domain被認為和GTP 水解息息相關。在G domain中有五個motif在序列上是非常高度保守的,其中G1 motif 和 phosphate binding有關,G2與G3 motif則會隨著nucleotide的水解而產生結構的變化,G4和G5 motif則與鹼基的辨認及結合相關。在過去的研究中發現BARD1會藉由它的BRCT domain與OLA1產生作用並藉此調控中心粒的複製。在這裡我們想要創造人工改造OLA1,使其突變後能夠更有效率地水解ATP。未來希望這些突變的OLA1能夠與BRCT更穩定的結合,以利之後利用X-ray結晶繞射實驗了解BRCT是如何調控OLA1的。


    The Obg family proteins are a large group of GTPases which are responsible for protein translation. One subfamily of this large group of proteins is YchF which has been considered as GTPase, but not ATPase, for a long time. However, it was found that human homologue of YchF could hydrolyze ATP more efficiently than GTP. Thus this protein is termed as Obg-like ATPase 1 (OLA1) [1] [2]. OLA1 contains a coil-coiled domain, TGS domain and G domain, which is important for GTP hydrolysis. In the G domain, there are five motifs, which are conserved on sequence level in all GTPases. The G1 motif (P-loop) is a loop responsible for phosphate binding. The G2 motif (switch I) and G3 motif (switch II) display nucleotide-dependent conformations. The G4 and G5 motifs are involved in base recognition and binding (Figure 4.a.). Previous studies found that BARD1 can interact with OLA1 by its BRCT domain, which is critical to DNA repair and centrosome regulation [2]. Here, we engineered OLA1 mutants having hyper ATPase-activity. This finding may be useful for biochemical and cellular studies of OLA1 and BARD1 in the future.

    中文摘要 5 Abstracts 6 Chapter 1.Introduction 7 1.1 Breast cancer-associated susceptibility gene-1 (BRCA1) 7 1.2 BRCA1-associated RING domain protein (BARD1) 6 1.3 Ras 8 1.4 Human obg-like ATPase 1 8 Chapter 2.Materials and methods 10 2.1 Structural comparison 10 2.2 OLA1 mutants 10 2.3 Protein expression and purification 10 2.3.1 Purification of OLA1 WT and mutants 10 2.3.2 Purification of BRCT2 11 2.4 ATP hydrolysis assay 11 2.5 Circular dichroism 12 2.6 Isothermal titration calorimetry 12 2.7 Trypsin digestion 12 2.8 Crystallization screening 13 Chapter 3.Result 14 3.1 The structural superimposition of OLA1 and Ras 14 3.2.The chromatogram of Superdex75 revealed that the conformation of OLA1 mutants is similar. 15 3.3. Most mutations have opposite effects on OLA1 compared with Ras. 15 3.4. The secondary structure and thermostability of OLA1 N40R and G103A are similar to WT. 16 3.5 OLA1 N40R and Q104 were more stable in the AMPPNP state than those in the apo state. 16 3.6 OLA1 Q104L compared with WT had better affinity with ATP 17 3.7 OLA1 mutants activated by BRCT2 17 Chapter 4.Conclusion and Discussion 18 Figures 20 Reference 44

    [1] Koller-Eichhorn R, Marquardt T, Gail R, Wittinghofer A, Kostrewa D, Kutay U, et al. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem. 2007;282:19928-37.
    [2] Matsuzawa A, Kanno S, Nakayama M, Mochiduki H, Wei L, Shimaoka T, et al. The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. Mol Cell. 2014;53:101-14.
    [3] Wu Q, Paul A, Su D, Mehmood S, Foo TK, Ochi T, et al. Structure of BRCA1-BRCT/Abraxas Complex Reveals Phosphorylation-Dependent BRCT Dimerization at DNA Damage Sites. Mol Cell. 2016;61:434-48.
    [4] Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol. 2001;8:833-7.
    [5] Birrane G, Varma AK, Soni A, Ladias JA. Crystal structure of the BARD1 BRCT domains. Biochemistry. 2007;46:7706-12.
    [6] Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991;349:117-27.
    [7] Carvalho AT, Szeler K, Vavitsas K, Aqvist J, Kamerlin SC. Modeling the mechanisms of biological GTP hydrolysis. Arch Biochem Biophys. 2015;582:80-90.
    [8] Pathak E. Analysis of correlated mutations in Ras G-domain. Bioinformation. 2017;13:174-8.
    [9] Mazurenko S, Stourac J, Kunka A, Nedeljkovic S, Bednar D, Prokop Z, et al. CalFitter: a web server for analysis of protein thermal denaturation data. Nucleic Acids Res. 2018;46:W344-W9.
    [10] Bera AK, Lu J, Wales TE, Gondi S, Gurbani D, Nelson A, et al. Structural basis of the atypical activation mechanism of KRAS(V14I). J Biol Chem. 2019;294:13964-72.
    [11] Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, et al. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat. 2011;32:33-43.
    [12] Ford B, Skowronek K, Boykevisch S, Bar-Sagi D, Nassar N. Structure of the G60A mutant of Ras: implications for the dominant negative effect. J Biol Chem. 2005;280:25697-705.
    [13] Muraoka S, Shima F, Araki M, Inoue T, Yoshimoto A, Ijiri Y, et al. Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants. FEBS Lett. 2012;586:1715-8.
    [14] Novelli ET, First JT, Webb LJ. Quantitative Measurement of Intrinsic GTP Hydrolysis for Carcinogenic Glutamine 61 Mutants in H-Ras. Biochemistry. 2018;57:6356-66.
    [15] Spoerner M, Hozsa C, Poetzl JA, Reiss K, Ganser P, Geyer M, et al. Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem. 2010;285:39768-78.
    [16] Baker R, Wilkerson EM, Sumita K, Isom DG, Sasaki AT, Dohlman HG, et al. Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination. J Biol Chem. 2013;288:36856-62.
    [17] Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol Cancer Res. 2015;13:1325-35.
    [18] Marcus K, Mattos C. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects. Clin Cancer Res. 2015;21:1810-8.
    [19] Matsumoto S, Miyano N, Baba S, Liao J, Kawamura T, Tsuda C, et al. Molecular Mechanism for Conformational Dynamics of Ras.GTP Elucidated from In-Situ Structural Transition in Crystal. Sci Rep. 2016;6:25931.
    [20] Schubbert S, Bollag G, Lyubynska N, Nguyen H, Kratz CP, Zenker M, et al. Biochemical and functional characterization of germ line KRAS mutations. Mol Cell Biol. 2007;27:7765-70.
    [21] Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38:331-6.
    [22] Serebriiskii IG, Connelly C, Frampton G, Newberg J, Cooke M, Miller V, et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun. 2019;10:3722.

    QR CODE