簡易檢索 / 詳目顯示

研究生: 張庭豪
Chang, Ting-Hao
論文名稱: 纖維蛋白質應用在有機綠色元件之探討
A Study of Organic Green Electronics with Fibrous Proteins
指導教授: 黃振昌
Hwang, Jenn-Chang
甘炯耀
Gan, Jon-Yiew
口試委員: 鄭裕庭
李紫原
林錫堅
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 有機薄膜電晶體摩擦發電機蛋白質材料離子轉移電沉積綠色元件
外文關鍵詞: Organic thin film transistors, Triboelectric generators, Protein materials, Ions transfer, Electrodeposition, Green electronics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物可分解的蛋白質(聚合物電解質),材料本身安全、無毒、對環境友善等特性,近年來,使用蛋白質材料來製作綠色元件已受大家矚目。本論文中,成功的利用蛋白質製作兩種不同的電子元件,包括有機薄膜電晶體及摩擦發電機,研究發現,水合蛋白中氨基酸側鏈是好的離子來源,可形成的薄膜介面電雙層進一步提升元件表現。
    在製作有機薄膜電晶體時,蜘蛛絲蛋白質被選用當作閘極介電層,實驗觀察發現,元件量測從真空中到大氣濕度約70%環境下,元件有效載子遷移率可從0.11cm2V-1s-1上升至4.3cm2V-1s-1,而起始電壓可從−6 V下降至−0.5 V,此歸由於蛋白質內移動離子的產生,此可增加靜電容值及載子累積能力,提升元件性能。另外一方面,電沉積製程也成功應用在蠶絲電晶體的製程,此方法可在水溶液製程中進行閘極介電層圖案化,元件有好的良率及穩定性。
    在製作摩擦發電機元件時,含有甘油的明膠蛋白被選用為正極摩擦材料,與負極材料鐵氟龍進行摩擦發電,實驗觀察發現,當環境濕度從20%上升至60%,元件的輸出開路電壓可以增加40-50V,輸出短路電流可增加1-2μA。在環境濕度60%下,可得到最大的輸出,約82V的開路電壓及2.8 mA/m2短路電流密度,在外接電阻100MΩ時可得到最大功率密度,此功率密度可同時亮100顆LED燈。


    Green electronics using biodegradable materials, such as protein-based polyelectrolytes, have attracted much interest in recently years because they are safe, nontoxic, and friendly to environment. In this thesis, we demonstrated two kind of green electronics devices, organic thin film transistors (OTFTs) and triboelectric generators (TEGs) fabricated with protein-based polyelectrolytes. The side chains of the amino acids in hydrated protein act as good sources of ions and the formation of the electric double-layer capacitors (EDLCs) enhances the device performance.
    In OTFTs, spider silk protein was selected as gate dielectrics. The effective mobility (sat) of the pentacene OTFTs in saturation regime increases from 0.11cm2V-1s-1 in vacuum to 4.3cm2V-1s-1 in air ambient at ca. 70% RH. The corresponding the threshold voltage (Vth) value reduces from −6 V in vacuum to −0.5 V in air ambient. It points that mobile ions may increase the capacitance and the accumulation ability of carrier to enhance the device performance. In the other hand, the electrodeposition has been applied to silk-based OTFTs process successfully in order to pattern the dielectric in solution environment. The method can get high yield rate and high stability for the device.
    In TEGs, gelatin/glycerol was chosen as the positive material to contact the Polytetrafluoroethylene (PTFE) thin film. When the relative humidity is raised from 20% to 60%, the output open-circuit voltage increases to 40-50V and the output short-circuit current increases to 1-2 μA. The device can provide an open-circuit voltage of 82 V and a short-circuit current density of 2.8 mA/m2 with a maximum power density of nearly 150 mW/m2 at a resistant of 100MΩ in air ambient ca. 60%RH, which is able to drive 100 LEDs simultaneously.

    中文摘要 I Abstract II 致謝 VI 目錄 V 圖目錄 X 第一章 序論 1 1.1 研究動機與目的 1 1.1.1 蛋白質材料選擇 1 1.1.2 元件選擇 1 1.2 論文架構 2 第二章 文獻回顧 3 2.1 有機場效電晶體 3 2.1.1 有機場效電晶體之發展背景 3 2.1.2 有機場效電晶體結構 7 2.1.3 介電層材料簡介 8 2.1.4 有機半導體簡介 10 2.1.5 汲極/源極的選擇 14 2.1.6 有機場效電晶體運作原理 18 2.2 摩擦發電機 23 2.2.1 摩擦發電機之發展背景 23 2.2.2 摩擦發電機結構 25 2.2.3 摩擦發電機正負電材料簡介 26 2.2.4 摩擦發電機運作原理 27 參考文獻 29 第三章 實驗步驟與方法 38 3.1 實驗流程 38 3.2 蛋白質薄膜製作方法 38 3.2.1 蜘蛛絲蛋白薄膜製備 38 3.2.2 蠶絲蛋白薄膜製備 39 3.2.3 明膠蛋白薄膜製備 40 3.3 有機場效電晶體製作方法 41 3.4 摩擦發電機製作方法 42 3.5 實驗設備 42 3.5.1 真空熱蒸鍍機系統 42 3.5.2 原子力顯微鏡 43 3.5.3 圓二色光譜儀 45 3.5.4 霍氏轉換紅外光譜儀 45 3.5.5 水滴角量測系統 47 3.5.6 探針電性量測系統 48 3.5.7 直線馬達電性量測系統 48 參考文獻 48 第四章 蜘蛛絲蛋白介電層之介電性質分析與有機場效電晶體之效能分析 49 4.1 前言 49 4.2 實驗 51 4.2.1 有機場效電晶體元件製作 51 4.2.2 有機場效電晶體元件量測 52 4.3 結果與討論 53 4.3.1 蜘蛛絲蛋白溶液結構分析 53 4.3.2 蜘蛛絲蛋白薄膜品質分析 53 4.3.3 蜘蛛絲蛋白薄膜之靜電容性質分析 56 4.3.4 蜘蛛絲蛋白薄膜介電層之有機場效電晶體特性分析 57 4.3.5 機制探討 61 4.4 結論 65 參考文獻 65 第五章 以電沉積法製作蠶絲蛋白有機場效電晶體之效能分析 68 5.1 前言 68 5.2 實驗 68 5.2.1 有機場效電晶體元件製作 68 5.2.2 有機場效電晶體電性量測 70 5.3 結果與討論 70 5.3.1 電沉積蠶絲蛋白薄膜介電層品質分析 70 5.3.2 電沉積蠶絲蛋白薄膜介電層之有機場效電晶體效能分析 73 5.3.3 機制討論 77 5.4 結論 82 參考文獻 82 第六章 明膠蛋白薄膜摩擦發電機之效能分析 84 6.1 前言 84 6.2 實驗 86 6.2.1 摩擦發電機元件製作 86 6.2.2 摩擦發電機元件電性量測 87 6.3 結果與討論 88 6.3.1 摩擦薄膜分析 88 6.3.2 甘油對明膠蛋白薄膜摩擦發電機之效能分析 91 6.3.3 環境濕度對明膠蛋白薄膜摩擦發電機之效能分析 95 6.3.4 表面靜電對明膠蛋白薄膜摩擦發電機之效能分析 100 6.3.5 機制探討 103 6.4 結論 106 參考文獻 107 第七章 結論 110

    Ch2
    [1] A. Sharma, C. Madhu, J. Singh, International Journal of Computer Applications 89 (2014) 36.
    [2] B. Kumar Kaushik, Y. S. Negi, Polymer Reviews 54 (2014) 33.
    [3] H. S. White, G. P. Kittlesen, M. S. Wrighton, J. Am. Chem. Society 106 (1984) 5375.
    [4] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49 (1986) 1210.
    [5] K. Kudo, M. Yamashina, T. Moriizumi, Jpn. J. Appl. Phys 23 (1984) 130.
    [6] J. H. Schon, Phys. Stat. Sol. 226 (2001) 257.
    [7] J. H. Schon, B. Batlogg, J. Appl. Phys. 89 (2001) 336.
    [8] S.Lee, B. Koo, J. Shin, E. Lee, H. Park, Appl. Phys. Lett. 88 (2006) 162109.
    [9] Oana D. Jurchescu, Mihaita Popinciuc, Bart J. van Wees, Thomas T. M. Palstr, Adv. Mater. 19 (2007) 688.
    [10] O. Abanoz, C. Dimitrakopoulos, Turkish Journal of Physics, 38 (2014) 497.
    [11] T. Yamamoto, K. Takimiya, J. Am. Chem. Soc. 129 (2007) 2224.
    [12] S. Haas, Y. Takahashi, K. Takimiya, T. Hasegawa, Appl. Phys. Lett. 95 (2009), 022111.
    [13] K. Nakayama, Y. Hirose, J. Soeda, M. Yoshizumi, T. Uemura, M. Uno, W. Li, M. J. Kang, M. Yamagishi , Y. Okada, E. Miyazaki, Y. Nakazawa, A. Nakao, K.Takimiya, J. Takeya, Adv. Mater. 23 (2011) 1626.
    [14] A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S. S’anchez-Carrera, S. Granados-Focil, J. Schrier, S. C. B. Mannsfeld, A. P. Zoombelt, Z. Bao, A. Aspuru-Guzik, Nature Communications 2 (2011) 437.
    [15] Y. Diao, L. Shaw, Z. Bao, Stefan C. B. Mannsfeld, Energy Environ. Sci. 7 (2014) 2145.
    [16] D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, K. Cho, Adv. Mater. 19 (2007) 678.
    [17] Y. Diao, B. C-K. Tee, G. Giri, J. Xu1,, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nature Materials 12 (2013) 665.
    [18] W. Tang, L. Feng, P. Yu, J. Zhao, X. Guo, Adv. Electron. Mater. 2016, 1500454.
    [19] D. Tobjörk, R. Österbacka, Adv. Mater. 23 (2011) 1935.
    [20] L. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, T. N. Jackson, Appl. Phys. Lett. 88 (2006) 083502-1.
    [21] P. T. Liu, L.W. Chu, J. Display Techn. 5 (2009) 224.
    [22] N. Liu, Y. Hu, J. Zhang, J. Cao, Y. Liu, J. Wang, Org. Electron. 13 (2012) 2781.
    [23] Q. T. Zhang, V. Subramanian, Biosens. Bioelectron. 12 (2007) 3182.
    [24] P. Lin, F. Yan, Adv. Mater. 24 (2012) 34.
    [25] K. Myny, M. J. Beenhakkers, N. A. J. M. van Aerle, G. H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, Solid State Circuits Conference–Digest of Technical Papers 2009.
    [26] K. Myny, M. J. Beenhakkers, N. A. J. M. Van Aerle, G. H. Gelinck, J. Genoe, W. Dehaene, P. Heremans, IEEE J. Solid-State Circuits 46 (2011) 1223.
    [27] H. N. Raval, S. P. Tiwari, R. R. Navan, S. G. Mhaisalkar, V. R. Rao, IEEE Electron Device Lett. 30 (2009) 484.
    [28] H. Marien, M. S. J. Steyaert, E. V. Veenendaal, E. Heremans, IEEE J. Solid-State Circuits. 46 (2011) 276.
    [29] J. Jeon, B. Murmann, Z. Bao, IEEE Electron Device Lett. 31 (2010) 1488.
    [30] Saji, k., J., Experimental Techniques, Characterization Tools and Thin Film Transistors, 2011 105.
    [31] S. E. Fritz, T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 109 (2005) 10574.
    [32] Y. Xie, S. Cai, Q. Shi, S. Ouyang, W.-Y. Lee, Z. Bao, J. R. Matthews, R. A. Bellman, M. He, H. H. Fong, Org. Electro. 15 (2014) 2073.
    [33] R. Sarma, D. Saikia, K. Konwar, B. Baishya, Indian J. Phys. 84 (2010) 547.
    [34] M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. Mater. Electron.19 (2008) 915.
    [35] G. Reyna-Garcia, M. Garcia-Hipolito, J. Guzaman-Mendoza, M. Anguilar-Frutis, C. Falcony, J. Mater. Sci.: Mater. Electron. 15 (2004) 439.
    [36] X. H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, Org. Electron. 8 (2007) 718.
    [37] S. Scheinert, G. Paasch, M. Schrodner, H. K. Roth, S. Sensfub, Th. Doll, J. Appl. Phy. 92 (2002) 330.
    [38] S. J. Park, J. H. Sung, J. H. Park, H. J. Choi, J. S. Choi, Curr. Appl. Phys. 6 (2006) 636.
    [39] J. Puigdollers, C. Voz, I. Martin, A. Orpella, M. Vetter, R. Alcubilla, J. Non-Cryst. Solids. 338 (2004) 617.
    [40] F. De Angelis, S. Cipolloni, L. Mariucci, G. Fortunato, Appl. Phys. Lett. 86 (2005) 203505-1.
    [41] W. Y. Chou, C.W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F.Y. Yang, D. Y. Shu, C. C. Liao, Appl. Phys. Lett. 89 (2006) 112126-1.
    [42] H. Klauk, Chem. Rev. 39 (2010) 2643.
    [43] J. Puigdollers, C. Voz, M. Fonrodona, S. Cheylan, M. Stella, J. Andreub, M. Vetter, R. Alcubilla, Journal of Non-Crystalline Solids 352 (2006) 1778.
    [44] Xian Li, Yadong Jiang, Guangzhong Xie, Huiling Tai, Ping Sunb, Bo Zhang, Sensors and Actuators B: Chemical 176 (2013) 1191.
    [45] M. Kraus, S. Richler, A. Opitz, W. Brütting, S. Haas, T. Hasegawa, A. Hinderhofer, Frank Schreiber, Appl. Phys. Lett. 107 (2010) 094503.
    [46] Z. Bao, A. Dodabalapur, A.J. Lovinger, Appl. Phys. Lett. 69 (1996) 4108.
    [47] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 401 (1999) 685.
    [48] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet, M. F. Toney, Macromolecules 38 (2005) 3312.
    [49] L. H. Jimison, M. F. Toney, I. McCulloch, M. Heeney, A. Salleo, Adv. Mater. 21 (2009) 1568.
    [50] B. S. Ong, Y. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 126 (2004) 3378.
    [51] S. C. Lim, Y. S. Yang, S. H. Kim, Z.-S. Kim, D.-H. Youn, T. Zyung, J. Y. Kwon, D.-H. Hwang, D. J. Kim, ETRI Journal, 31(2009) 647.
    [52] Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 120 (1998) 207.
    [53] H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature 404 (2000) 478.
    [54] H. E. Katz, J. Johnson, A. J. Lovinger and W. Li, J. Am. Chem. Soc. 122 (2000) 7787.
    [55] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni, Appl. Phys. Lett. 80 (2002) 2517.
    [56] X. H. Zhang, B. Kippelen, J. Appl. Phys.104 (2008) 104504.
    [57] H. Li, B. C-K. Tee, J.J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, Z. Bao, J. Am. Chem. Soc. 134 (2012) 2760.
    [58] M. Mamada, H. Shima, Y. Yoneda, T. Shimano, N. Yamada, K. Kakita, T. Machida, Y. Tanaka, S. Aotsuka, D. Kumaki, S. Tokito, Chem. Mater. 27 (2015) 141.
    [59] D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gruter, S. Haas, B. Batlogg, Proc. of SPIE. 5940 (2005) 59400O-1.
    [60] Y. Fujisaki, Y. Nakajima, D. Kumaki, T. Yamamoto, S. Tokito, T. Kono, J. Nishida, Y. Yamashita, Appl. Phys. Lett. 97 (2010) 133303-1.
    [61] M.I. Vladu, E.D. Głowacki, P.A. Troshin, G. Schwabegger, L. Leonat, D.K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, M.A. Bodea, V.F. Razumov, H. Sitter, S. Bauer, N.S. Sariciftci, Adv. Mat. 24 (2012) 375.
    [62] S. D. Wang, K. Kanai, Y. Ouchi, K. Seki, Org. Electron. 7 (2006) 457.
    [63] T. J. Ha, P. Sonar, S. P. Singh, A. Dodabalapur, IEEE Trans. Electron Devices. 59 (2012) 1494.
    [64] S. O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill Pub.) (2006).
    [65] C. Li, F. Pan, X. Wang, L. Wang, H. Wang, H. Wang, D. Yan, Org. Electron. 10 (2009) 948.
    [66] T. J. Ha, P. Sonar, A. Dodabalapur, Appl. Phys. Lett. 98 (2011) 253305-1.
    [67] M. Spijkman, E. C. Smits, P. W. Blom, D. M. De Leeuw, Y. B. S. Come, S. Setayash, E. J. Cantatore, Appl. Phys. Lett. 92 (2008) 143304-1.
    [68] H. Dong, X. Fu, J. Liu, Z. Wang, W. Hu, Adv. Mater. 25 (2013) 6158.
    [69] V. Podzorov, CRC Press: Boca Raton, FL, (2007) 27.
    [70] W. Warta, R. Stehle, N. Karl, Appl. Phys. A. 36 (1985) 163.
    [71] J. H. Schon, C. Kloc, B. Batlogg, Science. 288 (2000) 2338.
    [72] V. Podzorov, E. Menard, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 95 (2005) 226601.
    [73] Y. H. Lo, Emerging Optoelectronic Technologies and Applications (World Scientific, 1997) 251.
    [74] A. Miller, E. Abrahams, Physical Review. 120 (1960) 745.
    [75] P. M. BW. T. G Gruenbaum, E. H. Magin, Jpn. J. Appl. Phys. 35 (1996) 2698.
    [76] G. Dennler, N. S. Sariciftci, C. J. Brabec, Conjugated Polymer-based Organic Solar Cells in Semiconducting Polymers (Wiley-VCH Verlag GmbH, Weinheim, 2006).
    [77] M. Shur, M. Hack, J. Appl. Phys. 55 (1984) 3831.
    [78] G. Horowitz,Adv. Mater. 10 (1998) 365.
    [79] F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 1 (2012) 328.
    [80] Z. L. Wang, J. Chen, L. Lin, Energy Environ. Sci. 8 (2015) 2250.
    [81] Z. L. Wang, ACS nano 7 (2013) 9533.
    [82] X.-S. Zhang, M.-D. Han, R.-X. Wang, F.-Y.Zhu, Z.-H. Li, W. Wang, H.-X. Zhang, Nano Lett. 13 (2013) 1168.
    [83] C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D.Y. Park, G.-T. Hwang,
    M. Byun, Z. L. Wang, Y. S. Jung, K. J. Lee, Nano Lett. 14 (2014) 7031.
    [84] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z. L. Wang, Nano Lett. 13 (2013) 2226.
    [85] L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z. L. Wang, Nano Lett. 13 (2013)
    2916.
    [86] G. Zhu, Z. H. Lin, Q. S. Jing, P. Bai, C. F. Pan, Y. Yang, Y. S. Zhou, Z. L
    Wang, Nano Lett. 13 (2013) 847.
    [87] Z. Zhao, X. Pu, C. Du, L. Li, C. Jiang, W. Hu, Z. L. Wang, ACS Nano 10 (2016) 1780.
    [88] Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu, Z. L. Wang, ACS Nano 7 (2013) 7119.
    [89] M. L. Seol, J. H. Woo, S. B. Jeon, D. Kim, S. J. Park, J. Hur, Y. K. Choi, Nano Energy 14 (2015) 201.
    [90] Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z. L. Wang, Angew. Chem. Int. Ed. 52 (2013) 12545.
    [91] D. Choi, D. Yoo, D. S. Kim, Adv. Mater. 7 (2015) 7484.
    [92] Y. Sun, X. Huang, S. Soh, Chem. Sci. 6 (2015) 3347..
    [93] Z.-H. Lin, G. Cheng, S. Lee, Z. L. Wang, Adv. Mater. 26 (2014) 4690.
    [94] C. Zhang, W. Tang, L. Zhang, C. Han, Z. L.Wang, ACS Nano 8 (2014) 8702.
    [95] Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, Adv. Mater. 26 (2014) 5851.
    [96] S. Wang, X. Mu, Y.Yang, C. Sun, A.Y. Gu, Z. L. Wang, Adv. Mater. 27 (2015) 240.
    [97] Z.-H. Lin, G. Zhu, Y. S. Zhou, Y. Yang, P. Bai, J. Chen, Z. L. Wang, Angew. Chem. Int. Ed. 52 (2013) 5065.
    [98] Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z. L. Wang, ACS Nano 7 (2013) 4554.
    [99] V. Nguyen, R. Yang, Nano Energy 2 (2013) 604.
    [100] F. R. Fan, L. Lin, G. Zhu, W. Z. Wu, R. Zhang, Z. L. Wang, Nano Lett. 12 (2012) 3109.
    [101] Z. L. Wang, Faraday Discuss. 176 (2014) 447.
    [102] A. Coehn, Ann. Phys. 64 (1898) 217.
    [103] S.P. Hersch, D.J. Montgomery, Text. Res. J. 25 (1955) 279.
    [104] J. Henniker, Nature 196 (1962) 474.
    [105] C.K. Adams, Nature’s Electricity, Tab Books, Blue Ridge Summit, PA, 1987, p. 63.
    [106] D. J. Lacks, R. M. Sankaran, J. Phys. D: Appl. Phys. 44 (2011) 453001.
    [107] A.F. Diaz, R.M. Felix-Navarro, Journal of Electrostatics 62 (2004) 277.

    Ch3
    [1] 林鶴南,掃描探針上課講義(2011)
    [2] W. B. Gratzer, D. A. Cowburn, Nature 222 (1969) 426.
    [3] 汪建民,材料分析,中國材料分析協會(1998)
    [4] 何雍,最新儀器分析總整理,鼎茂圖書出版股份有限公司(2008)
    [5] M. Jackson, H. H. Mantsch, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 95.
    [6] https://en.wikipedia.org/wiki/Contact_angle

    ch4
    [1] H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, Adv. Funct. Mater. 19 (2009) 1046.
    [2] S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, Appl. Phys. Lett. 92 (2008) 103313.
    [3] T. Fujimotoa, K. Awaga, Phys.Chem. Chem. Phys. 15 (2013) 8983.
    [4] M. W. Lin, L. Liu, Q. Lan, X. Tan, K. S Dhindsa, P. Zeng, V. M Naik, M. M. C. Cheng, Z. Zhou, J. Phys. D: Appl. Phys. 45 (2012) 345102.
    [5] M. J. Panzer, C. D. Frisbie, Adv. Funct. Mater. 16 (2006) 1051.
    [6] L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O. J. Hagel, G. Gustafsson, M. Berggren, Adv. Mater. 19 (2007) 97.
    [7] L. Herlogsson, M. Colle, S. Tierney, X.Crispin, M. Berggren, Adv. Mater. 22 (2010) 72.
    [8] L. Herlogsson, X. Crispin, S. Tierney, M. Berggren, Adv. Mater. 23 (2011) 4684.
    [9] B. Zhou, J. Sun, Xiao Han, J. Jiang, Q. Wan, IEEE Electron Device Lett. 32 (2011) 1549.
    [10] N. Correia, P. Barquinha, L. Pereira, G. Goncalves, R. Martins, IEEE Electron Device Lett. 29 (2008) 988.
    [11] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23 (2011) 1630.
    [12] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S. H. Hsu, P.-C. Lyu, T.-J. Liu, Org. Electro. 14 (2013) 1170.
    [13] C. Y. Hsieh, J. C. Hwang, T. H. Chang, J. Y. Li, S. H. Chen, Appl. Phys. Lett. 103 (2013) 023303.
    [14] C. Y. Li, J. C. Hwang, Y. L. Chueh, T. H. Chang, Y. Y. Cheng, P. C. Lyu, Org. Electron. 14 (2013) 2645.
    [15] L. S. Tsai, J. C. Hwang, C. Y. Lee, Y. T. Lin, C. L. Tsai, T. H. Chang, Y. L. Chueh, H. F. Meng, Appl. Phys. Lett. 103 (2013) 233304.
    [16] H. S. Sheu, K. W. Phyu, Y. C. Jean, Y. P. Chiang, I. M. Tso, H. C. Wu, J. C. Yang, S. L. Ferng, Int. J. Biol. Macromol, 34 (2004) 325.
    [17] I. M. Tso, H. C. Wu, I. R. Hwang, J. Exp. Biol. 208 (2005) 1053.
    [18] D. Huemmerich, U. Slotta, T. Scheibel, Appl. Phys. A. 82 (2006) 219.
    [19] E. Metwalli, U. Slotta, C. Darko, S. V. Roth, T. Scheibel, C. M. Papadakis, Appl. Phys. A. 89 (2007) 655.
    [20] X. Chen, D. P. Knight, Z. Shao, F. Vollrath, Biochemistry. 41 (2002) 14944.
    [21] M. Jackson, H. H. Mantsch, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 95.

    Ch5
    [1] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23 (2011) 1630.
    [2] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S. H. Hsu, P.-C. Lyu, T.-J. Liu, Org. Electro. 14 (2013) 1170.
    [3] C. Y. Hsieh, J. C. Hwang, T. H. Chang, J. Y. Li, S. H. Chen, Appl. Phys. Lett. 103 (2013) 023303.
    [4] C. Y. Li, J. C. Hwang, Y. L. Chueh, T. H. Chang, Y. Y. Cheng, P. C. Lyu, Org. Electron. 14 (2013) 2645.
    [5] J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, T.-C. Wen, Adv. Mater. 23 (2011) 4077.
    [6] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 290 (2000) 2123.
    [7] B.-J. Gans, P. C. Duineveld, U. S. Schubert, Adv. Mater. 16 (2004) 203.
    [8] B. S. Cook, J.R. Cooper, M. M. Tentzeris, IEEE, 23 (2013) 353.
    [9] T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, PNAS. 105 (2008) 4976.
    [10] D. Maniglio, W. Bonani, G.Bortoluzzi, E. Servoli, A. Motta, C. MigliaresiI, Journal of bioactive and compatible polymers, 25 (2010) 441.

    Ch6
    [1] F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 1 (2012) 328.
    [2] P. Bai, G. Zhu, Z.-H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, Z. L. Wang, ACS Nano 7 (2013) 3713.
    [3] X. S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, H. X. Zhang, Nano Lett. 13 (2013) 1168.
    [4] K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M. H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, S. W. Kim, Adv. Mater. 26 (2014) 5037.
    [5] Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu, Z. L. Wang, ACS Nano 7 (2013) 7119.
    [6] M. L. Seol, J. H. Woo, S. B. Jeon, D. Kim, S. J. Park, J. Hur, Y. K. Choi, Nano Energy 14 (2015) 201.
    [7] Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z. L. Wang, Angew. Chem. Int. Ed. 52 (2013) 12545.
    [8] D. Choi, D. Yoo, D. S. Kim, Adv. Mater. 7 (2015) 7484.
    [9] Y. Sun, X. Huang, S. Soh, Chem. Sci. 6 (2015) 3347.
    [10] Z.-H. Lin, G. Cheng, S. Lee, Z. L. Wang, Adv. Mater. 26 (2014) 4690.
    [11] Z.-H. Lin, G. Zhu, Y. S. Zhou, Y. Yang, P. Bai, J. Chen, Z. L. Wang, Angew. Chem. Int. Ed. 52 (2013) 5065.
    [12] Z.-H. Lin, Y. Xie, Y.Yang, S. Wang, G. Zhu, Z. L. Wang, ACS Nano 7 (2013) 4554.
    [13] X. Wen, Y. Su, Y. Yang, H. Zhang, Z. L. Wang, Nano Energy 4 (2014) 150.
    [14] H. Guo, J. Chen, L. Tian, Q. Leng, Y. Xi, C. Hu, ACS Appl. Mater. Interfaces 6 (2014) 17184.
    [15] Z.-H. Lin, G. Cheng, Y. Yang, Y. S. Zhou, S. Lee, Z. L. Wang, Adv. Funct. Mater. 24 (2014) 2810.
    [16] L. S. McCarty, G. M. Whitesides, Angew. Chem. Int. Ed. 47 (2008) 2188.
    [17] D. J. Lacks, R. M. Sankaran, J. Phys. D: Appl. Phys. 44 (2011) 453001.
    [18] K. Y. Leea, M. K. Guptaa, S. W. Kima, Nano Energy 14 (2015) 139.
    [19] Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, Adv. Mater. 26 (2014) 5851.
    [20] J. Sun, W. Li, G. Liu, W. Li, M. Chen, J. Phys. Chem. C 19 (2015) 9061.
    [21] S. Rivero, M.A. García, A. Pinotti, Innovat. Food Sci. Emerg. Tech. 11 (2010) 369.
    [22] A.A. Karim, R. Bhat. Trends in Food Science & Technology 19 (2008) 644.
    [23] J. K. Oha, D. I. Leea, J. M. Parkb, Progress in Polymer Science 34 (2009) 1261.
    [24] R. sharma, S. trigwell, M. K. mazumder, Particulate Science and Technology, 26 (2008) 587.
    [25] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z. L. Wang, Energy Environ. Sci. 8 (2015) 887.
    [26] Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z. L. Wang, ACS Nano 9 (2015) 8376.
    [27] V. Nguyen, R. Yang, Nano Energy 2 (2013) 604.
    [28] H. C. Liang, W. H. Chang, K. J. Lin, H. W. Sung, J. Appl. Polym. Sci. 91 (2004) 4017.
    [29] M. F. Butler, Y. F. Ng, P. D. A. Pudney, J. Appl. Polym. Sci. J. Polym. Chem. 41 (2003) 3941.
    [30] J. Lowell, A. C. Rose-Innes, Adv. Phys. 29 (1980) 947.
    [31] L. S. McCarty, A. Winkleman, G. M. Whitesides, J. Am. Chem. Soc. 129 (2007) 4075.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE