研究生: |
鄭國韋 Cheng, Kuo-Wei |
---|---|
論文名稱: |
應用於互補式金屬氧化物半導體影像感測器以毗連像素傳遞技術讀出之時間延遲積分電路架構 Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
邱進峰
林宗賢 鄭桂忠 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 時間延遲積分 、毗連像素傳遞技術 、互補式金屬氧化物半導體影像感測器 |
外文關鍵詞: | time-delay integration, Adjacent Pixel Signal Transfer, CMOS image sensor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文提出了一應用於互補式金屬氧化物半導體影像感測器(CIS)時間延遲積分(TDI)電路架構,其架構以毗連像素傳遞技術(APST)讀出。藉由毗連像素傳遞技術讀出方式,不需要增加多餘像素內元件以及金屬繞線,來實現一個仿電荷耦合元件(CCD)的時間延遲積分功能。憑藉像素外的同行共用單位增益緩衝器,像素內的影像訊號有效地被傳遞至相鄰的像素並且累加。此論文所提出的時間延遲積分電路架構擁有許多特色。首先,由於用作傳遞及讀出訊號的同行共用單位增益緩衝器,功率消耗和面積因此大為減少。其二,此論文所提出的時間延遲積分電路架構擁有像電荷耦合元件簡單傳遞以及累加訊號的優點,且其像素為一個基本的三個電晶體的主動像素感測器。主要兩顆chip已被設計且提出為了彼此比較並且驗證TDI的功能。
陣列為128x6 且像素大小為6x6μm2 及23.1%填充係數的APST時間延遲積分電路使用TSMC 0.18μm 1P6M CIS 技術設計並且完成晶片研製,此晶片擁有實現6個時間延遲積分級數。 在3.3V的工作電壓下,其量測結果成功驗證了時間延遲積分的功能與效能。藉由6個時間延遲積分階數增進了7dB SNR,5.2% 光響非均勻性,功率損耗僅為4.43uW/column, 以上特性皆表示其電路為有效應用於遙測感測器。本論文採用同行共用單位增益緩衝器,使晶片面積僅為 1.7mm x 1.3mm,並且傳輸效率改善高達至99.6%。
陣列為128x16 且像素大小為6x6μm2 及23.1%填充係數的revised APST時間延遲積分電路使用TSMC 0.18μm 1P6M CIS 技術設計並且完成晶片研製,此晶片擁有實現16個時間延遲積分級數。 在3.3V的工作電壓下,其量測結果成功驗證了時間延遲積分的功能與效能。藉由16個時間延遲積分階數增進了13dB SNR,5.9% 光響非均勻性,功率損耗僅為4.89uW/column。本論文採用同行共用單位增益緩衝器,使晶片面積僅為 1.7mm x 1.3mm。
In the thesis, a time delay and integration (TDI) structure for CMOS image sensor (CIS) with adjacent pixel signal transfer (APST) is presented. The CCD-like TDI function is achieved in CIS by proposed APST without additional in-pixel device and routing effort. The in-pixel integrated signal is transferred to adjacent pixel and summed up by an off-pixel column-shared unity-gain buffer. There are several features of the proposed TDI structure. First, due to the column-shared unity-gain buffer utilized to transfer and readout signal, the power consumption and area occupancy are reduced and minimized greatly. Second, the proposed circuit has the advantage of CCD such as the ease of the summing signals with basic 3T APS pixel. There are proposed chips which are designed to compare and verify TDI function.
A 128x6 APST TDI sensor with 6x6μm2 pixel size has been designed and fabricated in TSMC0.18μm 1P6M CIS technology providing 6 TDI stages with fill factor of 23.1%. The TDI function and the superior performance have been verified by experimental measurement with 3.3V power supply. It achieves a SNR improvement of 7dB with 6 TDI stages, a PRNU of 5.2%, and a low power consumption of 4.43uW/column which provides an optimized solution for remote sensing. Thanks to the column-shared op-amp adopted in this thesis, the chip size is minimized to 1.7mm x 1.3mm, and the transfer efficiency is also improved up to 99.6%.
A 128x16 revised APST TDI sensor with 6x6μm2 pixel size has been designed and fabricated in TSMC0.18μm 1P6M CIS technology providing 16 TDI stages. The TDI function and the superior performance have been verified by experimental measurement with 3.3V power supply. It achieves a SNR improvement of 13dB with 16 TDI stages, a PRNU of 5.9%, and a low power consumption of 4.89uW/column. Thanks to the column-shared op-amp adopted in this thesis, the chip size is minimized to 1.7mm x 1.3mm.
Reference
[1] G. Lepage, J. Bogaerts, G. Meynants, “Time-Delay-Integration Architectures in CMOS Image Sensors,” IEEE Trans. Electron Devices, Nov. 2009,vol. 56, pp. 2524-2533.
[2] Fu-Kai Tsai, Hong-Yi Huang, Li-Kuo Dai, Cheng-Der Chiang, Ping-Kuo Weng, Yung-Chung Chin, “A time-delay-integration CMOS readout circuit for IR scanning,” in Proc. 9th Int. Conf. Electron., Circuits Syst., 2002,vol. 1, pp. 347-350
[3] Melik Yazici, Huseyin Kayahan, Omer Ceylan, and Yasar Gurbuz, “Design of a ROIC for Scanning Type HgCdTe LWIR Focal Plane Arrays,” in Proc. Electron. Imag. Conf., 2010, vol. 7660, 76603X
[4] G. Lepage, D. Dantès, and W. Diels, “CMOS long linear array for space application,” in Proc. Electron. Imag. Conf., Jan. 2006,vol. 6068, pp. 61–68.
[5] Chul Bum Kim, Byung-Hyuk Kim, Yong Soo Lee, Han Jung, Hee Chul Lee, “Smart CMOS Charge Transfer Readout Circuit for Time Delay and Integration Arrays,” in Proc. IEEE Custom Integr. Circuits Conf., 2006, pp.651-654.
[6] H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices: Design and applications,” IBM J. Res. Develop. 1992, vol. 36, no. 1, pp. 83–105, Jan..
[7] J. F. Johnson, “Modeling imager deterministic and statistical modulation transfer functions,” Appl. Opt. ,Nov. 1993, vol. 32, no. 32, pp. 6503–6513.
[8] B. Pain, T. Cunningham, G. Yang, M. Ortiz, and B. Olson, “CMOS image sensors capable of time-delayed integration,” NASA Tech Briefs, Apr. 2001, vol. 25,no. 4, NPO-20802.
94
[9] H. Bugnet, “Design and evaluation of TDI operation of CMOS sensor for industrial imaging application,” in Proc. Minalogic Image Sens. Image Process., 2008.
[10] G. Lepage, “Time delayed integration CMOS image sensor with zero desynchronization,” Patent Application US 20080079830, Apr. 3, 2008.
[11] X. Wang, P. Rao, and A. Theuwissen, “Characterization of the buried channel n-MOST source followers in CMOS image sensors,” in Proc. Int. Image Sens. Workshop, Ogunquit, ME, Jun 2007. 6–10,
[12] L. Wengao, G. Jun, C. Zhongiian, L. Jing, C. Wentao, T. Ju, and J. Lijiu,“A novel low-power readout structure for TDI ROIC,” in Proc. 5th Int. Conf. ASIC, 2003, vol. 1, pp. 591–594.
[13] H. Michaelis, R. Jaumann, S. Mottala, J. Oberst, R. Kramm, R. Roll, H. Boehnhardt, H. Michalik, and G. Neukum, “CMOS-APS sensor with TDI for high resolution planetary remote sensing,” in Proc. IEEE CCD AIS Workshop, 2005, pp. 31–34.
[14] Kim, C.B. ; Hwang, C.H. ; Kim, B.H. ; Lee, Y.S. ; Lee, H.C.,” CMOS TDI readout circuit that improves SNR for satellite IR applications,” Electronics Letters, 2008, vol.44, pp.346-347
[15] I. M. Hafez, G. Ghibauso, F. Balestra, “A study of flicker noise in MOS transistors operated at room and liquid helium temperatures,” Solid State Electronics, 1990,pp. 1525-1529.
[16] W. V. Backensto, C. R. Viswananathan, “Bias-dependent 1/f noise model of an MOS transistor,” in Proc. IEEE, 1980, pp.87-92.
[17] J. F. Johnson, “Hybrid infrared focal plane signal and noise model,” IEEE Trans. Electron Devices, 1999, pp.96-108.
95
[18] C. K. Liu, X. H. Yuan, X. H. Zhang, “Fixed pattern noise and its suppression in CMOS ROIC,” Semiconductor Optoelectronics, 2002, pp.170-173.
[19] Ohta, Jun. “Smart CMOS image sensors and applications,” Taylor & Francis Group, an informa business
[20] J.E. Carnes and W.F. Kosonocky, “Noise source in charge-coupled devices,” RCA Review, June 1972, 33(2), pp. 327–343
[21] B. Tyrrell, R. Berger, C. Colonero, J. Costa, M. Kelly, E. Ringdahl,K. Schultz, and J. Wey, “Design approaches for digitally dominated active pixel sensors: Leveraging Moore’s law scaling in focal plane readout design,” Proc SPIE, Feb. 2008, vol. 6900, pp. 690 00W.
[22] Xiqu Chen, “The noise analysis and its suppression in CMOS ROIC for microbolometric infrared focal plane array,” in Proc. SPIE, November 2008, vol. 7135 713539-8
[23] Orly Yadid-Pecht, Ralph Etienne-Cummings, “CMOS Imagers From Phototransduction to Image Processing,” KLUWER ACADEMIC PUBLISHERS,2004
[24] K. Yonemoto, “Fundamentals and Applications of CCD/CMOS Image Sensors,” Q Pub. Co., Ltd., Tokyo, Japan, 2003. In Japanese
[25] Libin Yao, “CMOS readout circuit design for infrared image sensors,” in Proc. SPIE, 2009, Vol. 7384 73841B-1
[26] Steckl, A. J. Tam, K. Y. Motamedi, M. E., “Direct injection readout of the p-n PbS‐Si heterojunction detector,” Applied Physics Letters, 1979, Vol. 35, pp. 537-539
96
[27] C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-Plane Arrays and CMOS Readout Techniques of Infrared Imaging Systems,” IEEE Trans. on Circuits and Systems for Video Tech., 1997, Vol. 7, No. 4, pp. 594-605
[28] K. Chow, J. P. Rode, D. H. Seib, and J. D. Blackwell, “Hybrid infrared focal-plane arrays,” IEEE Trans. Electron Devices, 1982, vol. 29, no. 1, .
[29] A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, and F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,,” Opt. Eng., 1987, vol. 26, pp. 232–240 .
[30] N. Bluzer and R. Stehlik, “Buffered direct injection of photocurrents into charge coupled devices,” IEEE Trans. Electron Devices, 1978, vol. 25, no. 2, pp. 160–166
[31] C.-C. Hsieh et al, “High-performance CMOS buffered gate modulation input (BGMI) readout circuits for IR FPA,” Solid-State Circuits,, August 1998, vol. 33, no. 8, pp. 1188--1198
[32] N.Yoon, B. Kim, H.C.Lee, and C.K. Kim, “High Injection Efficiency Readout Circuit for Low Resistance Infra-Red Detector,” IEE Electronics Letters, September 1999, Vol. 35, No. 18, pp. 1507-1508
[33] H. Kulah and T. Akin, "A current mirroring integration based readout circuit for high performance infrared FPA applications," IEEE Trans. Circuits Syst. II, April 2003, vol. 50, no. 4
[34] Cynthia Liu∗, Jer LinÎ, Michael Tseng, “Design of CMOS sensor fill factor for optimal MTF and SNR,” Proc. of SPIE, 2010, Vol. 7826 78261N-1.
[35] RSI Project Team, “RSI Allocations/Performances and Verification Document”, ROC2-TN-0143-MMS-T, ASTRIUM, 2002
97
[36] Cheng,Sheng-coung, "Trade-off Study on Fill Factor of Self-Reliant CMOS FPA", Doc No: ITRC-RSFS5.RSIMEMO-00-980807, 2009
[37] Rainer Sandau, "Potential and Shortcoming of Small Satellite for Topographic Mapping", DLR German Aerospace Center, 2007
[38] H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices: Design and applications,” IBM J. Res. Develop., Jan. 1992.vol. 36, no. 1, pp. 83–106,
[39] J. A. Cox, “Signal-to-noise ratio dependence on frame rate, time delay and integration (TDI), and pulse shaping,” Opt. Eng., May/Jun. 1982. vol. 21, no. 3,pp. 528–536,
[40] S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: The DigitalAPD,” Proc. SPIE, Feb. 2006 vol. 6068, p. 606 80D,
[41] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 2002, vol. 13, no. 2, pp. 335–350,
[42] R. Gonzalez and P. Wintz, Digital Image Processing. Reading, MA: Addison-Wesley, 1987
[43] Agwani, S. ; Miller, J. ; Chamberlain, S.G. ; Washkurak, W.D., "High resolution tri-linear colour TDI CCD image sensor with programmable responsivity gain,"Electron Devices Meeting, 1995.pp. 151-154
[44] H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices: Design and applications,” IBM J. Res. Develop. , Jan. 1992, vol. 36, no. 1, pp. 83–105.
[45] C. Frojdh, H.E. Nilsson, P. Nelvig, C.S. Petersson, “Simulation of the XRay Response of Scintillator Coated Silicon CCDs,” IEEE Transactions on Nuclear Science, 1998.Vol. 45, No. 3, pp. 374-378, Jun.
98
[46] A. Portillo, S. Monacos, “TC237 CCD Sensor Camera Design Specification for the Optical Communications Demonstrator Acquisition, Tracking , and Pointing Subsystem”, JPL internal document, October 19,2000.
[47] Texas Instruments, “680x500 Pixel CCD Image Sensor TC237”, June 1996.
[48] Texas Instruments, “TC237 Timing of Frame Transfer CCD Image Sensor”, June 1996.
[49] Texas Instruments, “3-V 10-Bit 27 MSPS Area CCD Sensor Signal Processor TLV987”, September 1999.
[50] H Yang, Y Guo and R M Fu, "Study on field butting of TDI CCD, " Optical Technique, March 2003, vol. 29, No. 2, pp. 226-228.
[51] J Y Ren, B Sun, X X Zhang and C C Zhen, "Precision measurement of TDICCD interleaving assembly, " Optics and Precision Engineering, Oct 2008, vol. 16, No. 10, pp. 1852-1857.
[52] Lihong Yang ; Xingxiang Zhang ; Jianyue Ren,"Precision detection of CCD splicing based on template matching algorithm," IEEE Computing, Control and Industrial Engineering conf, vol.2, pp.224-227