簡易檢索 / 詳目顯示

研究生: 鍾宜良
Chung, Yi-Liang
論文名稱: 化學氣相沈積合成水平排列式單壁奈米碳管製作奈米碳管電晶體及其特性之研究
Investigation of CNT-FETs with CVD synthesis of horizontally aligned single-walled carbon nanotube arrays
指導教授: 柳克強
Leou, Keh-Chyang
蔡春鴻
Tsai, Chuen-Horng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 147
中文關鍵詞: 奈米碳管電晶體化學氣相沈積水平排列式陣列
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    單壁奈米碳管具有良好抵抗電致遷移的能力以及高熱穩定性、高電流密度和高載子遷移率等特性,如此優異的材料性質,若作為電晶體的導電層,勢必能有效提升元件特性。將這類型碳管定向排列,不但能有效定位製程元件,往大面積積體化發展,亦能有效降低碳管間的接觸阻抗,增加載子在通道中傳輸能力。
    在許多合成奈米碳管的方法中,化學氣相沉積法(CVD)是廣泛被業界使用作為鍍膜的製程方法,因此也是較能與現有半導體、光電製程相容的成長模式;但近年來奈米碳管在場效電晶體、發光二極體、非揮發式記憶體、感測器、可撓式透明基板的應用漸受到重視,因此可水平且平行排列成長的技術為研發重點。在奈米碳管元件應用特性上,平行成長碳管能有效降低碳管之間接觸電阻,較不易影響載子在碳管中的傳輸,能有效增加電晶體中的飽和電流。而利用單晶石英基板的特性能引導奈米碳管在基板上沿著某一特定方向成長,達到水平排列式結構;其中石英基板的不導電特性更可以有效減少元件在高頻訊號上的散失。若將此技術應用於元件中導電層的製作,在其上方再製作成三極結構,此上閘極結構的奈米碳管電晶體有較高開電流值、互導值,因為上閘極結構的關係,能避免碳管上吸附極性分子,磁滯大小視窗表現會較小,此技術運用於電晶體有顯著的發展。
    本研究主旨為是發展以熱裂解化學氣相沉積法於石英基板上合成水平排列式奈米碳管陣列,並以碳管陣列上研製奈米碳管電晶體。單晶石英基板的特性在經過長時間高溫退火,表面會形成階梯狀的結構形貌來引導碳管平行排列成長於基板上,成長奈米碳管所使用的催化劑是鎳(Ni)/二氧化矽(SiO2)之雙層催化劑結構,其二氧化矽的結構使碳管能側向成長於基板上。在ST-cut規格的石英基板,則設計一實驗找出碳管成長排列方向與基板切面呈現九十度的角度關係,將有利於在基板上定位定向製作元件。成長奈米碳管之製程氣體為甲烷及氫氣之混合氣體,適當增加氫氣在混合氣體的比例,發現碳管因為氫氣帶走多餘的非結晶碳,有利於碳管的成長。從實驗中發現,透過不同的成長溫度會影響奈米碳管的密度與品質;不同的成長時間會影響奈米碳管的覆蓋性、準直性與品質。檢測奈米碳管石墨化的程度所使用的儀器是拉曼光譜(Raman spectrum)分析儀;量測碳管的直徑範圍及碳管之管徑分佈則利用原子力顯微鏡(AFM)。所成長的碳管長度能超過10 µm,密度最密能接近1 count/µm,IG/ID ratio能大於10以上,顯示碳管石墨化程度相當高。改變上層催化劑SiO2的鍍率則能有效控制奈米碳管的直徑分佈,當SiO2鍍率為1.0 Å/s,碳管平均直徑為1.413 nm;鍍率為0.5 Å/s,碳管平均直徑為1.283 nm;鍍率為0.2 Å/s,碳管平均直徑為0.944 nm。在研製元件及設計上,選用成長溫度900˚C、成長時間30分鐘的成長參數導入應用於電晶體結構的製作,因為這參數所成長之碳管有較佳的密度、長度,IG/ID ratio大於10以上,適合元件的發展。介電層部分,是利用atomic layer deposition (ALD) 技術製作高覆蓋性與高緻密度的Al2O3氧化層,閘極電流(漏電流)抑制在10-11A。在300組碳管水平陣列中,有9個電晶體的開電流能達到µA,開/關電流比約2-3;其中有1個電晶體,其次臨界曲線約為330 mV/decade,磁滯效應大小約為2 V左右,開/關電流比超過103的優異電性表現。


    目錄 摘要.............................................................................................................i 致謝...........................................................................................................iv 目錄...........................................................................................................vi 圖目錄........................................................................................................x 表目錄.....................................................................................................xiv 第一章 緒論..............................................................................................1 1-1. 奈米碳管的結構與特性............................................................1 1-2. 利用化學氣相沈積法成長奈米碳管........................................5 1-3. 奈米碳管在電子元件上的應用................................................8 1-4. 奈米碳管電晶體的傳輸模式..................................................11 1-5. 奈米碳管與金屬之接觸阻抗..................................................12 1-6. 研究動機..................................................................................14 第二章 文獻回顧....................................................................................16 2-1. 製作方向性排列式碳管的方法..............................................16 2-2. 側向成長奈米碳管及其直徑分佈控制..................................17 2-3. 石英基板介紹..........................................................................19 2-4. 碳管成長製程..........................................................................21 2-5. 元件結構及特性......................................................................27 2-6. 總結..........................................................................................33 第三章 研究方法與實驗設備................................................................35 3-1. 研究方法.................................................................................35 3-2. 試片備製及黃光微影製程 (photolithography) ....................36 3-2-1. 光罩之設計..................................................................39 3-3. 奈米碳管的成長.....................................................................42 3-3-1. 雙層催化劑結構及碳管直徑分佈..............................43 3-3-2. 碳管檢測與元件電性量測..........................................45 3-4. 奈米碳管電晶體的製作.........................................................46 3-5. 原子層沈積應用於元件之介電層.........................................49 3-6. 實驗設備.................................................................................53 3-6-1. 熱裂解化學氣相沈積系統..........................................53 3-6-2. 電子槍蒸鍍系統 (E-gun evaporation system) ...........54 3-6-3. 拉曼光譜儀 (Micro-Raman Spectroscopy) ...............55 3-6-4. 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ......................................................58 3-6-5. 原子力顯微鏡(Atomic Force Microscopy, AFM) .....60 3-6-6. 多探針奈米電性量測系統 (Multi-Probe Nano-Electronic Measurement System) .....................62 第四章 結果與討論................................................................................64 4-1. 在無熱退火的石英基板與矽基板上成長奈米碳管..............64 4-2. 奈米碳管在石英基板(熱退火後)上的成長...........................65 4-3. 奈米碳管物性量測及分析......................................................70 4-4. 奈米碳管在石英基板上的定位定向......................................73 4-5. 利用不同的製程氣體比例成長單壁奈米碳管......................74 4-6. 製程溫度與時間對於碳管密度與品質之影響......................78 4-6-1. 奈米碳管之SEM及拉曼光譜分析.............................78 4-6-2.奈米碳管之AFM直徑量測統計..................................85 4-7. 上閘極奈米碳管電晶體電性量測及分析..............................93 4-7-1. 二極直流(DC)電性分析..............................................94 4-7-2. 三極電性量測及分析..................................................95 4-8. 雙極性奈米碳管電晶體之討論............................................101 4-9. 奈米碳管電晶體良率的提高..............................................104 第五章 結論與展望..............................................................................114 5-1. 結論........................................................................................114 5-1-1. 在石英基板上定位定向成長單壁奈米碳管............114 5-1-2. 奈米碳管物性分析....................................................114 5-1-3. 透過雙層催化劑系統成功控制奈米碳管直徑分佈115 5-1-4. 熱裂解化學氣相沈積合成奈米碳管製作奈米碳管電 晶體............................................................................115 5-1-5. 高性能的奈米碳管電晶體........................................116 5-1-6. 發現雙極性奈米碳管電晶體....................................116 5-2. 後續研究建議........................................................................117 5-2-1. 半導性奈米碳管比例的提升....................................117 5-2-2. 選擇合適的金屬電極材料........................................117 附錄A 三種不同SiO2鍍率所成長單壁奈米碳管之AFM圖............119 附錄B 上閘極奈米碳管電晶體之電性量測圖...................................127 附錄C 二極電性量測圖.......................................................................132 參考文獻................................................................................................142

    參考文獻
    [1]. Teri Wang Odom, et al., “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, vol.391, pp.62-64, 1988.
    [2]. W. Hoenlein, et al., “Carbon nanotubes for microelectronics: status and future properties”, Material Science and Engineering C, vol.23, pp.663-669, 2003.
    [3]. P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, “Carbon Nanotube Electronics”, Proceeding of the IEEE, vol.91, No.11, pp. 1772-1784, 2003.
    [4]. Mann, D., et al., “Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts.”, Nano Lett., 3(11): pp.1541-1544, 2003.
    [5]. J. Liu, X. Li, A. Schrand, T. Ohashi, L. Dai, “Controlled syntheses of aligned multi-walled carbon nanotubes: Catalyst particle size and density control via layer-by-layer assembling”, Chem. Mater., vol.17, pp.6599-6604, 2005.
    [6]. Woong Kim, et al., “Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes”, Nano Lett., 2(7): pp. 703-708, 2002.
    [7]. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College Press, London, 1998.
    [8]. M. S. Dresselhaus, et al., “Group theoretical concepts for carbon nanotubes”, Molecular Materials, vol.4,pp.27-40,1994.
    [9].G. Zhang, X. Wang, X. Li, Y. Lu, Ali Javey, and Hongjie Dai, “Carbon Nanotubes: From Growth, Placement and Assembly Control to 60 mV/decade and sub-60 mV/decade Tunnel Transistors”, IEDM, 2006.
    [10].Y. Zhang, et al. “Electric-field-directed growth of aligned single-walled carbon nanotubes”,Appl. Phys. Lett., vol.79, pp. 3155-3157, 2001.
    [11].A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of aligned single-walled carbon nanotubes on surfaces”,Appl. Phys. Lett., vol.81, pp.3464-3466, 2002.
    [12].S. Han, X. Liu, and C. Zhou, “Template-Free Directional Growth of Single-Walled Carbon Nanotubes on a-and r-Plane Sapphire”, J. Am. Chem. Soc., vol.127, pp.5294-5295, 2005.
    [13]. Y. M. Li, et al., “Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasna Enhanced CVD Method”, Nano Lett., 4(2): pp. 317-321, 2004.
    [14].S. Huang, M. Woodson, R. Smalley, J. Liu, “Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using Fast-Heating Chemical Vapor Deposition Process”, Nano Lett. , 4(6): pp. 1025-1028, 2004.
    [15].J. Kong, et al., “Sythesis of Single-walled Carbon Nanotubes on Patterned Silicon Wafers”,Nature, vol.395, pp.878-881,1998.
    [16].W. Hoenlein, “New prospects for Microelectronics: Carbon Nanotubes”, Jpn. J. Appl. Phys., vol.41, pp.4370-4374 Part1, No.6B,2002.
    [17].A. Naeemi, R.Sarvari, and J. D. Meindl,“Performance Comparison Between Carbon Nanotube and Copper Interconnects for Gigascale Intergration”, IEEE Electron Device Letters, vol.26, pp.84-86, No.2, 2005.
    [18].Georg S. Duesberg, et al., “Growth of Isolated Carbon Nanotubes with Lithographically Defined Diameter and Location”, Nano Lett., vol.3, No.2, pp.257-259, 2003.
    [19].R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field effect transistors”, Appl. Phys. Lett., vol.73, pp.2447-2449, 1998.
    [20].S. J. Tans, A. R. M. Verschueren, C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, vol.393, pp.49-52, 1998.
    [21].S. J. Wind, et al., “Vertical scaling of carbon nanotube field effect transistors using top gate electrodes”, Appl. Phys. Lett., vol.80, No.20, pp.3817-3819, 2002.
    [22].Ali, Javey, et al., “Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-k Gate Dielectrics”, Nano Lett., vol.4, No.3, pp.447-450, 2004.
    [23].Ali, Javey, H. Kim, H. Dai, et al., “High-k dielectrics for advanced carbon-nanotube transistors and logic gates”, Nature Materials, vol.1, pp.241-246, 2002.
    [24].Martel, R., et al., “Ambipolar electrical transport in semiconducting single-wall carbon nanotubes.”, Phys. Rev. Lett., 87(25),pp. 256805-1~4, 2001.
    [25].Wind, S.J., et al., Transistor structures for the study of scaling in carbon nanotubes. Journal of Vacuum Science & Technology B, 21(6): pp. 2856-2859, 2003.
    [26].Bockrath, M., et al., Chemical doping of individual semiconducting carbon-nanotube ropes. Phy. Rev. B, 61(16): pp. 10606-10608, 2000.
    [27].Y. Zhang, Hongjie Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes”, Appl. Phys. Lett., vol.77, pp.3015-3017, 2000.
    [28].Y. Zhang, Nathan W. Franklin. Robert J. Chen, Hongjie Dai, “Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction”, Chem. Phys. Lett., vol.331, pp.35-41, 2000.
    [29].Lei Ding, et al., “Growth of High-Density Parallel Arrays of Long Single-Walled Carbon Nanotubes on Quartz Substrates”, B. J. Am. Chem. Soc., 2008.
    [30].Kang, S.J., et al., “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.”, Nature Nanotechnology, 2(4): pp. 230-236, 2007.
    [31].Kocabas, C., et al., “Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transistors”, Small, 1(11): pp. 1110-1116, 2005.
    [32].Kocabas, C., et al., “Experimental and Theoretical Studies of Transport through Large Scale, Partially Aligned Arrays of Single-Walled Carbon Nanotubes in Thin Film Type Transistors”, Nano Lett., 7(5): pp. 1195-1202, 2007.
    [33].Jie Liu, et al., “Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates”, Chem. Phys. Lett., vol.303, pp.125-129, 1999.
    [34]. Limin Huang, et al., “Orientated assembly of single-walled carbon nanotubes and applications”,J. Material Chem., 17, pp.3863-3874, 2007.
    [35].Henk W. C. Postma, et al., “Manipulation and Imaging of Individual Single-Walled Carbon Nanotubes with an Atomic Force Microscope”, Adv. Material., pp.12, No. 17, 2000.
    [36]. Zhang YG, et al., “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Appl. Phys. Lett., 79 (19): pp. 3155-3157, 2001.
    [37].Zhong Jin et al., “Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays”, Nano Lett., 7(7): pp. 2073-2079, 2007.
    [38]. W.Y. Lee, C.H. Weng, Z.Y. Juang, J.F. Lai, K.C. Leou, and C.H.
    Tsai, “Lateral growth of single-walled carbon nanotubes across
    electrodes and the electrical property characterization.”, Diamond
    and Related Materials, 14, 1852-1856, 2005.
    [39]. W.Y. Lee, H. Lin, C.H. Weng, K.C. Leou, and C.H. Tsai, “CVD
    catalytic growth of single-walled carbon nanotubes with a selective
    diameter distribution.”, Diamond and Related Materials, 17, 66-71,
    2008.
    [40].Kocabas, C., et al., “Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors”, J. Phys. Chem. C, 111, pp.17879-17886, 2007.
    [41].辛坤瑩,國立清華大學 工程與系統科學系博士論文。
    [42].Dongning Yuan, et al., “Horizontally aligned single-walled carbon
    nanotube on quartz from a large variety of metal catalysts”, Nano
    Lett., 8(8): pp. 2576-2579, 2008.
    [43].L. Durrer, et al., “SWNT Growth by LPCVD on Ferritin-Based Iron Catalyst Nanoparticles towards CNT Sensors”, IEEE ,pp.187-190, 2007.
    [44]. Weiwei Zhou, Christopher Rutherglen, and Peter J. Burke, “Wafer
    scale synthesis of dense aligned arrays of single-walled carbon
    nanotubes.”, Diamond and Related Materials, Nano Res (2008)
    1: 158 165, Springer.
    [45].Pimparkar, N., et al., “Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation”, IEEE Electron Device Letters, 28(7): pp. 593-595, 2007.
    [46].M.S. Dresselhaus, et al., “Raman spectroscopy of carbon nanotubes”, Physics Reports , Vol. 409, pp.47-99, 2005.
    [47].翁政輝,國立清華大學 工程與系統科學系碩士論文。
    [48].Guangyu Zhang, et al., “Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction”, Science , Vol. 314, pp.974-977, 2006.
    [49].Lee WY, Weng CH, Juang CY, Lai JF, Leou KC and Tsai CH, “ Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization”, Diamond and Related Materials, 14(1-12), pp.1852-1856, 2005.
    [50].C. H. Weng, K. C. Leou, H. W. Wei, et al., “Structural transformation and field emission enhancement of carbon nanofibers by energetic argon plasma post-treatment”, Appl. Phys. Lett., 85 (20): pp.4732-4734, 2004.
    [51].李威養,國立清華大學 工程與系統科學系博士論文。
    [52].國家實驗研究院儀器科技研究中心,奈米結構原子級薄膜製程技術,2008。
    [53].Ref: "Atomic Layer Deposition," Cambridge NanoTech Inc., 24 April 06. <http://www.cambridgenanotech.com/>.
    [54].吳宏益,國立清華大學 工程與系統科學系碩士論文。
    [55].H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahashi, “Raman studies of carbon nanotubes”, Chem. Phys. Lett., 202, 509, 1993.
    [56].Neil Anderson et al., “Chirality Changes in Carbon Nanotubes Studied with Near-Field Raman Spectroscopy”, Nano Lett., 7(3): pp. 577-582, 2007.
    [57].Chico,L., Crespi,V. H., Benedict,L. X., Louie,S. G. & Cohen,M. L., “Pure carbon nanoscale devices: Nanotube heterojunctions.”, Phys. Rev. Lett., 76, pp.971 –974, 1996.
    [58].成會明, “奈米碳管”, 五南圖書出版, 2004.
    [59].D. Phokharatkul et al., “High-density horizontally aligned growth of carbon nanotubes with Co nanoparticles deposited by arc-discharge plasma method”, Appl. Phys. Lett., 93 (5): pp.053112-1~3, 2008.
    [60].Kim, W., et al., “Hysteresis caused by water molecules in carbon nanotube field-effect transistors.”, Nano Lett.,3(2):pp.193-198, 2003.
    [61].許益豪,國立清華大學 工程與系統科學系碩士論文。
    [62]. Marcelo A. Kuroda et al., “Joule heating induced negative differential resistance in freestanding metallic carbon nanotubes”, Appl. Phys. Lett., 89 (10): pp.103102-1~3, 2006.
    [63].Nosho, Y., et al., “ Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors.” , Nanotechnology, 17(14): pp. 3412-3415, 2006.
    [64].Chen, Z.H., et al., “ The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors.” , Nano Lett., 5(7): pp. 1497-1502, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE