研究生: |
王致傑 Ji-Jay Wang |
---|---|
論文名稱: |
二氧化鈦奈米管之製備及其場發射性質之研究 preparation and field emission property of TiO2 nanotubes |
指導教授: |
彭宗平
Tsong-Pyng Perge |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 二氧化鈦 、奈米管 、場發射 、滲雜 |
外文關鍵詞: | TiO2, nanotubes, field emission, doping |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
自從1991年Ijima 發現奈米碳管以來,由於它在光、電、機械上優異的特性,科學家也開始對不同材料的奈米管結構進行探討,期望能發現一些獨特且令人驚訝的性質。1972年Fujishima 和 Honda發現二氧化鈦具有光觸媒效果,此後開啟了TiO2的研究熱潮。本研究利用迴流方式製備出二氧化鈦奈米管,經由控制溫度、時間和酸鹼度等變數,得到不同形態的二氧化鈦奈米結構,也確立形成奈米管最佳條件,由此推測其形成機制。另外,利用奈米球和奈米管兩種不同形態的二氧化鈦來進行吸收光譜和PL光譜的量測,發現奈米管的吸收光譜約在400nm,奈米球約在320nm;在PL的光譜,奈米管之發光強度較奈米球強。此外,為了提升其導電度,並探討其場發射性質,亦對二氧化鈦奈米管進行成分修飾,分別摻入Fe0.025mol%和Nb 0.025mol%,摻雜之奈米管經由吸收光譜鑑定發現,兩者波長會隨摻入濃度上升而往長波長移動;量測場發射的性質發現,滲雜Fe之奈米管其場發射性質較滲雜Nb原子佳。簡言之,本研究著重於二氧化鈦奈米管光電應用之研究。
Abstract
Since Fujishima and Honda discovered the photocatalytic property of TiO2 in 1972, extensive research has been conducted. In this study, nanostructured titania was prepared by a reflux method. Both nanoparticles and nanotubes were obtained by this method. Several experimental parameters were controlled, such as temperature, reaction time and pH value, to better understand the formation mechanism of titania nanotubes and to get the best synthesis condition. In addition, PL and UV-absorption spectra were measured for nanoparticle and nanotube samples. It is seen that the nanotube has an absorption peak at 400nm, different from that of the particle. For the PL measurement, the intensity of nanotubes is stronger than that of particles. In order to improve the conductivity and field emission property, two metal ions, Fe and Nb, were doped into titania nanotubes to make p- and n-type semiconductor, respectively. The absorption edge was shifted to longer wavelength when the doping concentration increases. For pure TiO2 nanotubes field emission properties were not observed. The turn on field, of 0.025mol% Nb and Fe doped TiO2 nanotubes are 23 and 12 V/μm, respectively, with the defined current density at 0.01mA/cm2. The electronic and photonic properties of TiO2 nanotubes are discussed on the basis of nanostructure and doping composition.
References
1. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, and P. Yang, Science, 2001, 292, 1897.
2. F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science, 2001, 293, 2227.
3. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 2001, 293, 1289.
4. E. Wong, quoted by R.S. Boyd, Knight Rider Newspapers, Kansas City Star, Monday, November 8, 1999.
5. L. F. Chi, M. Hartig, T. Drechaler, Th. Schwaack, and G. Schmid, Appl. Phys. A., 1998, A66, 187.
6. S. J. Fonash, Z. Li, and M. J. O,Leary, J. Appl. Phys., 1985, 58, 4415.
7. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuator B, 1991, 3, 147.
8. H. M. Lin, T. Y. Hsu, C. Y. Tung, and C. M. Hsu, Nanostruct. Mater., 1995, 6, 1001.
9. H. P. Wu, A. Okano, and K. Takayanagi, Appl. Phys. A., 2001, 71, 643.
1 0. K. H. Chae, J. H. Son, G. S. Chang, H. B. Kim, J. Y Jeong, S.Im, J. H. Song, K. J. Kim, and C. N. Whang, NanoStruct. Mater., 1999, 11, 1239.
1 1. C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello, and S. T. Lee, J. Cryal Growth, 2000, 220, 446.
1 2. R. W. Siegel, Mater. Sci. Eng., 1993, A168, 189.
1 3. T. Hunag and R. W. Murry, J. Phys. B., 2001, 105, 12498.
1 4. Z. X. Tang, C. M. Sorenson, K. J. Klabundle, and G. C. Hadjipanayis, J. Colloid Interface Sci., 1991, 146, 38.
1 5. L. Zhang and J. L. Coffer, J. Sol-Gel Science and Tech., 1998, 11, 267.
1 6. D. Das, J. Farjas, P. Roura, G. Viera, and Bertran, Appl. Phys. Lett., 2001, 79, 3705.
1 7. D. B. Mawhiney, J. A. Glass, Jr., and J. T. Yates, Jr., J. Phys. Chem. B, 1997, 101, 1202.
1 8. Z. Mouffak, H. Aourag, J. D. Moreno, and J. M. Martinezduart, Microelectronic Eng., 1998, 43, 655.
1 9. Z. L. Wang, Adv. Mater., 2000, 12, 1295.
2 0. D. J. Sellmyer, M. Zheng, and R. Skomki, J. Phys. Condens. Mater., 2001, 13, R433.
2 1. S. Matsui and Y. Ochiai, Nanotechnology, 1996, 7, 247.
2 2. M. D. Levenson, Solid State technol., 1995, Sep., 81.
2 3. E. Olson, G. C. Spalding, A. M. Goldman, and M. J. Rooks, Appl. Phys. Lett., 1994, 65, 2740.
2 4. T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Burhro, Science, 1995, 270, 1791.
2 5. X. F. Duan and C. M. Leiber, Adv. Mater., 2000, 12, 298.
2 6. J. R. Heath and F. K. LeGoues, Chem. Phys. Chem., 1993, 208, 263.
2 7. A. Fujishima and K. Honda, Nature, 1972, 238, 37.
2 8. R. Wang, K.Hashimoto, and A. Fujishima, Nature, 1997, 388, 431.
2 9. N. Herron, Chem. Technol., 1989, 542.
3 0. R. Cai, T. Shuin, and A. Fujishima, Cancer Res., 1992, 52, 2346.
3 1. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. Chem. Rev., 1995, 95, 735.
3 2. J. Kiwi and M. Gratzel, J. Phys. Chem., 1981, 85, 592.
3 3. S. Iijima, Nature, 1991, 354, 56.
3 4. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett., 2002, 2, 427.
3 5. Y. Sun, B. T. Mayers, and Y. Xia, Nano lett., 2002, 2, 481.
3 6. X. Wen and S. Yang, Nano lett., 2002, 2, 451.
3 7. Y. Sun, and B. T. Mayers, Adv. Mater. 2003, 4, 678.
3 8. J. Kiwi and M. Gratzel, Angew. Chemie. Int. Ed. Engl., 1979, 18, 624.
3 9. C. A. Grimes, K. H. Ong, and O. K. Varghese, Sensors, 2003, 3, 69.
4 0. P. Hoyer, Langmuir, 1996, 12, 1411.
4 1. S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, and H. Shirai, Chem. Mater., 2000, 12, 1523.
4 2. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir, 1998, 14, 3160.
4 3. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater., 1999, 11, 1307.
4 4. B. Q. Chen, W. Zhou, G. Du, and L.M. Peng, Adv. Mater., 2002, 14, 1208.
4 5. Z. Y. Yuan, W. Zhou, and B. L. Su, Chem.Com., 2002, 1202.
4 6. Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacochen, and A. Gedanken, Chem.Com., 2001, 2616.
4 7. D. S. Seo, J. K. Lee, and H. Kim, J. Cry. Growth, 2001, 229, 428.
4 8. Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, Chem. Phys. Lett., 2002, 365, 300.
4 9. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M Reng, Appl. Phys. Lett., 2002, 79, 3702.
5 0. C. Burda, Y. Lou, X. Chen, A. S. Samia, J. Stout, and J. L. Gole, Nano Lett., 2003, 3, 1049.
5 1. K. E. Karakitsou and X. E. Verykios, J. Phys. Chem., 1993, 97, 1184.
5 2. Wonyong Choi, Andreas Termin, and Michaelv R. Hoffann, J. Phys. Chem., 1994, 98, 13669.
5 3. J. A. Navio, M. Macias, M. G. Catalan, and A. Justo, J. Mater. Science, 1992, 3036.
5 4. N. Serpone and D. Lawless, Langmuir, 1994, 10, 643.
5 5. K. Wilke and H.D. Breuer, J. Photochem. and Photobio. A: Chem., 1999, 121, 49.
5 6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 2001, 293, 296.
5 7. T. Umebayashi, App. Phys. Lett., 2002, 81, 454.
5 8. J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J. R. Morante, J. Appl. Phys., 2002, 92, 853.
5 9. P. Yang, M. Lu, and D. Xu, J. Phys. Chem. Solids, 2001, 62, 11810.
6 0. R. F. Sliva and M. Zaniquelli, Thin Solid Films, 2004, 1, 86.
6 1. M. H. Wang, R. J. Guo, T. L. Tso, and T. P. Perng, Int. J. Hydrogen Energy, 1995, 20, 555.
6 2. L. M. Gao, X. Y. Zhang, and C. X. Gao, Nanotech., 2003, 14, 931.
6 3. F. Priolo, G. Franzo, and D. Pacifici, J. Appl. Phys., 2001, 89, 264.
6 4. X. Li, P. L. Yue, and C. Kutal, New J. Chem., 2003, 27, 1264.
6 5. S. C. Kung, and K. S. Hung, Master thesis in NTHU, 2001.
6 6. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc. 2001, 123, 2791.
6 7. C. X. Xu and X. W. Sun, Appl. Phys. Lett., 2003, 83, 3806.
6 8. C. J. Lee, T. J. Lee, S. C. Lyu, and Y. Zhang, Appl. Phys. Lett.,2002, 81, 3684.
6 9. C. T. Hsiao, and J. M. Chen, Appl. Phys. Lett.,2003, 83, 3383.
7 0. K. D. Schierbaum, S. Fischer, P. Wincott, P. Hardman, V. Dhanak, G. Jones, and G. Thornton, Surface Science, 1997, 391, 196.
7 1. J. Chen, S. Z. Deng, and N. S. Xu, Appl. Phys. Lett., 2003, 83, 746.
7 2. C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett., 2004, 84, 1540.
7 3. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, and I. C. Chen, Adv. Funct. Mater., 2003, 13, 811.
7 4. F. C. Frederick, K. W. Wong, Y. H. Tang, Y. F. Zhang, and S. T. Lee, Appl. Phys. Lett., 1999, 12, 1700.
7 5. Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett.,2002, 81, 5048.
7 6. R. S. Chen, Y. S. Hung, Y. M. Liang, C. S. Hsieh and K. K. Tiong, Appl. Phys. Lett., 2004, 84, 1552.
7 7. J. Zhou, S. Z. Deng, N. S. Xu, and J. C. She, Appl. Phys. Lett., 2003, 83, 2653.