研究生: |
林辰憶 Lin, Chen-Yi |
---|---|
論文名稱: |
應用於毫米波之矽基板氮化銦鋁/氮化鎵高電子遷移率電晶體設計與製作 Design and Fabrication of InAlN/GaN HEMTs on Silicon Substrates for Millimeter-Wave Applications |
指導教授: |
徐碩鴻
Hsu, Shuo-Hung |
口試委員: |
謝光前
Hsieh, Kuang-Chien 孫健仁 Sun, Chien-Jen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 氮化鎵 、氮化銦鋁/氮化鎵 、高電子遷移率電晶體 、矽基板 、高頻 |
外文關鍵詞: | GaN, InAlN/GaN, HEMT, Silicon Substrate, high frequency |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於無線通訊技術的發達,例如手機、無線網路、無線充電及車用感應器…等;使得高頻及高功率電晶體的需求增加,氮化鎵高電子遷移率電晶體(GaN-based HEMTs),優越的材料特性,成為近年來非常受矚目的研究重點。AlGaN/GaN HEMTs具有高電子遷移率及在高電場下可維持高電子飽和速度,非常適合毫米波的應用。另外,為了降低成本及未來可能與CMOS電路作整合,將GaN元件製作於矽(Si)基板上已成為趨勢,元件的特性也已經有顯著的成果,然而,AlGaN/GaN HEMTs的可靠性(reliability)仍然是個問題。
本論文著重於矽基板(Si substrates)之InAlN/GaN HEMTs之高頻元件設計及分析,氮化銦鋁/氮化鎵(InAlN/GaN)接面具備晶格匹配特性,可望提高元件的可靠性,且在較薄的InAlN厚度下,仍可維持高濃度的二維電子氣通道,對電晶體的高頻特性非常有幫助。
本論文研究之矽基板InAlN/GaN HEMTs元件中,掘入式T型閘極結構的高頻特性表現,f_T可達50GHz以上,f_max可達100GHz以上。利用線型閘極加入蕭特基源極/汲極外延層結構,亦可成功地提升高頻特性。我們藉由高頻等效電路模型對元件進行分析,根據等效模型參數,指出高頻特性主要是被寄生效應所限制,所得到的結果也可以幫助我們了解,如何進一步改善元件的特性及InAlN/GaN 成長於矽基板上的磊晶結構。
In recent years, the wireless technology has been used widely for different applications such as mobile phones, wireless charging, and automotive sensors. This leads to an exponential increased demand of high frequency and high power transistors. GaN-based devices, owing to the superior material properties, have attracted significant attentions and become a popular research topic over the past decade. The AlGaN/GaN high electron mobility transistors (HEMTs) with an excellent mobility and high saturation velocity under a high electric field are suitable for millimeter wave applications. More recently, these devices fabricated on the silicon substrate with lower cost and possibility to integrate with CMOS devices showed significant progress in device characteristics. However, the transistor reliability is still an issue.
This thesis focuses on design and analysis of the high-frequency device of InAlN /GaN HEMTs on the Si substrates. The lattice-matched InAlN/GaN interface is expected to improve the device reliability issue. The high carrier density in the 2DEG channel can also enhance the transistor frequency response. The fabricated devices show a best f_T and f_max up to 50 GHz and 101 GHz respectively with a gate-recess structure. The devices with Schottky drain/source extension also result in improved high frequency performance. We analyze the devices in details by using the small-signal equivalent circuit model. Based on the analysis of the equivalent circuit model parameters, the dominant parasitic effects to limit the device RF characteristics have been identified. The obtained results can be used to understand how to further improve the device performance regarding the device fabrication and the epitaxy structure of the InAlN/GaN on the Si substrate.
[1]J.A. del Alamo, J. Joh, “GaN HEMT reliability,” Microelectronics Reliability, vol. 49, Issues 9-11, Nov. 2009.
[2]A. Crespo, M. M. Bellot, K. D. Chabak, J. K. Gillespie, G. H. Jessen, M, Kossler, V. Miller, M. Trejo, G. D. Via, D. E. Walker Jr., B. W. Winningham, H. E. Smith, T. A. Cooper, X. Gao, S. Guo, “High Frequency Performance of Ga free AlInN/GaN HEMT,” The 36th International Sysmposium on Compund Semiconductors 2009.
[3]Ambacher, “Growth and applications of group III-nitrides,” J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
[4]Likun Shen , “Advanced Polarization-Based Design of AlGaN/GaN HEMTs,” PhD thesis, University of California, Santa Barbara, 2004.
[5]B. Gelmont, K. Kim, and M. Shur, “Monte Carlo Simulation of Electron Transport in Gallium Nitride,” J. Appl. Phys., 74 (3), pp. 1818-1821, 1993.
[6]J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J.-F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, ‘‘Analysis of degradation mechanism in lattice-matched InAlN/GaN high-electron mobility transistors,’’ J. Appl. Phys., vol. 106, no. 12, pp. 124 503---124 503-7, Dec. 2009.
[7]J. Kuzmik, “InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal,” Semicond. Sci. Technol. 17 (2002)540.
[8] J. Kuzmik, “Power electronics on InAlN/(In)GaN: Prospect for a record performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510–512,Nov. 2001.
[9]O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, M. Oualli, R. Aubry, T. Reveyrand, J.C. Jacquet, M. A. Di Forte Poisson, E. Morvan, S. Piotrowicz, S. L. Delage, “Electrical Performances of AlInN/GaN HEMTs. A Comparison with AlGaN/GaN HEMTs with similar technological process,” International Journal of Microwave and Wireless Technologies (2011), Vol. 3, issue 3, pp 301-309.
[10]Y. Cao, T. Zimmermann, D. Deen, J. Simon, J. Bean, N. Su, J. Zhang,P. Fay, H. Xing, and D. Jena, “Ultrathin MBE-Grown AlN/GaN HEMTs with record high current densities,” in Proc. Int. Semicond. Device Res.Symp., College Park, MD, 2007, pp. 1–2.
[11]J. S. Xue, Y. Hao, J. C. Zhang, J. Ni, “Effect of high temperature AlN interlayer on the performance of AlGaN/GaN properties,” IEEE International Conference of Electron Devices and Solid-State Circuits, 2009. , vol., no., pp.416,418, 25-27 Dec. 2009.
[12]M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied Physics Letters , vol.89, no.6, pp.062106,062106-3, Aug 2006.
[13]J. Q. Xie, X. F. Ni, M. Wu, J. H. Leach,U¨. O¨zgu¨r, and H. Morkoc¸, “High electron mobility in nearly lattice-matched AlInN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 91, no. 13, Sep. 2007,Article 132116.
[14]D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys,S. Degroote, K. Cheng, M. Germain, and G. Borghs, “Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal,” Appl. Phys. Lett., vol. 97, no. 11,pp. 113501-1–113501-3, Sep. 2010.
[15]G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo,D. Langley, D. J. Denninghoff, M. Trejo, and E. R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2589–2597, Oct. 2007.
[16]B. Jacobs, M.C.J.C.M. Kramer, E.J. Geluk, F. Karouta, “Optimisation of the Ti/Al/Ni/Au ohmic contact on AlGaN/GaN FET structures,” Journal of Crystal Growth, Volume 241, Issues 1–2, May 2002.
[17]R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characterization of AlGaN/GaN HFETs,” IEEE Truns. Electron. Devices. Vol. 48. DD. 560-566. March 2001.
[18]R. Kudrawiec, B. Paszkiewicz, M. Motyka, J. Misiewicz, J. Derluyn, A.Lorenz, K. Cheng, J. Das, and M. Germain, “Contactless electroreflectance evidence for reduction in the surface potential barrier in AlGaN/GaN heterostructures passivated by SiN layer,” Journal of Applied Physics , vol.104, no.9, pp.096108,096108-3, Nov 2008.
[19]T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P.DenBaars, and U. K. Mishra, “Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2117–2123, Oct. 2005.
[20]F. Qian, J. H. Leach, and H. Morkoc, “Small signal equivalent circuit modeling for AlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaN HFET,” Proc. IEEE, vol. 98, no. 7, pp. 1140–1150, Jul. 2010.
[21]M. Berroth and R. Bosch, “High-frequency equivalent circuit of GaAs FETs for large-signal applications,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 2, pp. 224–229, Feb. 1991.
[22]N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. EZectron Devices, vol.35, no.7, pp.879,886, Jul 1988.
[23]P. J. Tasker and B. Hughes, “Importance of source and drain resistance to the maximum f of millimeter-wave MODFET's,” IEEE Electron Device Lett., vol. 10, pp. 291–293, July 1989.
[24]A. Koudymov, N. Pala, V. Tokranov, S. Oktyabrsky, M. Gaevski, R. Jain,J. Yang, X. Hu, M. Shur, R. Gaska, and G. Simin, “HfO2–III-Nitride RF switch with capacitively coupled contacts,” IEEE Electron Device Lett.,vol. 30, no. 5, pp. 478–480, May 2009.
[25]Y. R. Wu, M. Singh and J. Singh, ‘‘Device scaling physics and channel velocities in AIGaN/GaN HFETs: velocities and effective gate length,’’ IEEE Trans. Electron Devices 53, 588 (2006).
[26]R. Wang, G. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider,P. Fay, D. Jena, and H. Xing, “210-GHz InAlN/GaN HEMTs with dielectric-free passivation,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 892–894, Jul. 2011.
[27]J. W. Chung, O. I. Saadat, J. M. Tirado, X. Gao, S. Guo, and T. Palacios,“Gate-recessed InAlN/GaN HEMTs on SiC substrate with Al2O3 passivation,” IEEE Electron Device Lett., vol. 30, no. 9, pp. 904–906, Sep. 2009.
[28]D. M. Geum, S. H. Shin, M. S. Kim, J. H. Jang, “75 nm T-shaped gate for In0.17Al0.83N/GaN HEMTs with minimal short-channel effect,” Electronics Letters , vol.49, no.24, pp.1536,1537, November 21 2013.
[29]H. F. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J. F. Carlin, M. Gonschorek, N. Grandjean, and C. R. Bolognesi, “100 nm Gate (Al, In)N/GaN HEMTs Grown on SiC With fT=144 GHz,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 293–295, Apr. 2010.